9,039 research outputs found

    Screening and conductance relaxations in insulating granular aluminium thin films

    Full text link
    We have recently found in insulating granular Al thin film a new experimental feature (Delahaye et al., Phys. Rev. Lett. 106, 186602, 2011), namely the existence of a conductance relaxation that is not sensitive to gate voltage changes. This conductance relaxation is related to the existence of a metallic-like screening in the film and can be used to estimate its characteristic length scale. In the present paper, we give some experimental details on how this feature was measured and present our first results on the screening length temperature dependence.Comment: 14th Transport in interacting disordered systems (TIDS14) conference, September 5-8 2011, Acre (Israel

    Similar glassy features in the NMR response of pure and disordered La1.88Sr0.12CuO4

    Full text link
    High Tc superconductivity in La2-xSrxCuO4 coexists with (striped and glassy) magnetic order. Here, we report NMR measurements of the 139La spin-lattice relaxation, which displays a stretched-exponential time dependence, in both pure and disordered x=0.12 single crystals. An analysis in terms of a distribution of relaxation rates T1^-1 indicates that i) the spin-freezing temperature is spatially inhomogeneous with an onset at Tg(onset)=20 K for the pristine samples, and ii) the width of the T1^-1 distribution in the vicinity of Tg(onset) is insensitive to an ~1% level of atomic disorder in CuO2 planes. This suggests that the stretched-exponential 139La relaxation, considered as a manifestation of the systems glassiness, may not arise from quenched disorder.Comment: 7 pages, to be published in Phys. Rev.

    Optimal molecular alignment and orientation through rotational ladder climbing

    Full text link
    We study the control by electromagnetic fields of molecular alignment and orientation, in a linear, rigid rotor model. With the help of a monotonically convergent algorithm, we find that the optimal field is in the microwave part of the spectrum and acts by resonantly exciting the rotation of the molecule progressively from the ground state, i.e., by rotational ladder climbing. This mechanism is present not only when maximizing orientation or alignment, but also when using prescribed target states that simultaneously optimize the efficiency of orientation/alignment and its duration. The extension of the optimization method to consider a finite rotational temperature is also presented.Comment: 14 pages, 12 figure

    Emergent multipolar spin correlations in a fluctuating spiral - The frustrated ferromagnetic S=1/2 Heisenberg chain in a magnetic field

    Full text link
    We present the phase diagram of the frustrated ferromagnetic S=1/2 Heisenberg J_1-J_2 chain in a magnetic field, obtained by large scale exact diagonalizations and density matrix renormalization group simulations. A vector chirally ordered state, metamagnetic behavior and a sequence of spin-multipolar Luttinger liquid phases up to hexadecupolar kind are found. We provide numerical evidence for a locking mechanism, which can drive spiral states towards spin-multipolar phases, such as quadrupolar or octupolar phases. Our results also shed light on previously discovered spin-multipolar phases in two-dimensional S=1/2S=1/2 quantum magnets in a magnetic field.Comment: 4+ pages, 4 figure

    Electronic Correlations in CoO2, the Parent Compound of Triangular Cobaltates

    Full text link
    A 59Co NMR study of CoO2, the x=0 end member of AxCoO2 (A = Na, Li...) cobaltates, reveals a metallic ground state, though with clear signs of strong electron correlations: low-energy spin fluctuations develop at wave vectors q different from 0 and a crossover to a Fermi-liquid regime occurs below a characteristic temperature T*~7 K. Despite some uncertainty over the exact cobalt oxidation state n this material, the results show that electronic correlations are revealed as x is reduced below 0.3. The data are consistent with NaxCoO2 being close to the Mott transition in the x -> 0 limit.Comment: 4 pages, submitte

    A nonlinear model for rotationally constrained convection with Ekman pumping

    Full text link
    It is a well established result of linear theory that the influence of differing mechanical boundary conditions, i.e., stress-free or no-slip, on the primary instability in rotating convection becomes asymptotically small in the limit of rapid rotation. This is accounted for by the diminishing impact of the viscous stresses exerted within Ekman boundary layers and the associated vertical momentum transport by Ekman pumping. By contrast, in the nonlinear regime recent experiments and supporting simulations are now providing evidence that the efficiency of heat transport remains strongly influenced by Ekman pumping in the rapidly rotating limit. In this paper, a reduced model is developed for the case of low Rossby number convection in a plane layer geometry with no-slip upper and lower boundaries held at fixed temperatures. A complete description of the dynamics requires the existence of three distinct regions within the fluid layer: a geostrophically balanced interior where fluid motions are predominately aligned with the axis of rotation, Ekman boundary layers immediately adjacent to the bounding plates, and thermal wind layers driven by Ekman pumping in between. The reduced model uses a classical Ekman pumping parameterization to alleviate the need for spatially resolving the Ekman boundary layers. Results are presented for both linear stability theory and a special class of nonlinear solutions described by a single horizontal spatial wavenumber. It is shown that Ekman pumping allows for significant enhancement in the heat transport relative to that observed in simulations with stress-free boundaries. Without the intermediate thermal wind layer the nonlinear feedback from Ekman pumping would be able to generate a heat transport that diverges to infinity. This layer arrests this blowup resulting in finite heat transport at a significantly enhanced value.Comment: 38 pages, 14 figure

    Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    Get PDF
    We present a parareal in time algorithm for the simulation of neutron diffusion transient model. The method is made efficient by means of a coarse solver defined with large time steps and steady control rods model. Using finite element for the space discretization, our implementation provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner (LMW) benchmark [1]
    • …
    corecore