315 research outputs found

    Breaking the icosahedra in boron carbide

    Get PDF
    Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials

    Managing Renal Cell Carcinoma Associated Paraneoplastic Syndrome with Nephron-sparing Surgery in a Patient with von Hippel-Lindau.

    Get PDF
    A patient with germline von Hippel-Lindau (VHL) gene alteration and history of multiple tumors present with classical paraneoplastic syndrome (PNS) associated with renal cell carcinoma (RCC). She underwent open nephron sparing surgery with resolution of symptoms. She remained without recurrence of RCC for the initial 2 years of her follow-up. To the best of our knowledge, this case represents the first in which PNS was specifically resolved using a partial nephrectomy in a patient with VHL. This case report provides initial evidence for the potential role of nephron sparing surgery in the management of paraneoplastic symptoms associated with hereditary RCC

    Metabolic Control Analysis in a Cellular Model of Elevated MAO-B: Relevance to Parkinson’s Disease

    Get PDF
    We previously demonstrated that spare respiratory capacity of the TCA cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH) was completely abolished upon increasing levels of MAO-B activity in a dopaminergic cell model system (Kumar et al., J Biol Chem 278:46432–46439, 2003). MAO-B mediated increases in H2O2 also appeared to result in direct oxidative inhibition of both mitochondrial complex I and aconitase. In order to elucidate the contribution that each of these components exerts over metabolic respiratory control as well as the impact of MAO-B elevation on their spare respiratory capacities, we performed metabolic respiratory control analysis. In addition to KGDH, we assessed the activities and substrate-mediated respiration of complex I, pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and mitochondrial aconitase in the absence and presence of complex-specific inhibitors in specific and mixed substrate conditions in mitochondria from our MAO-B elevated cells versus controls. Data from this study indicates that Complex I and KGDH are the most sensitive to inhibition by MAO-B mediated H2O2 generation, and could be instrumental in determining the fate of mitochondrial metabolism in this cellular PD model system

    Clinical history and management recommendations of the smooth muscle dysfunction syndrome due to ACTA2 arginine 179 alterations

    Get PDF
    Smooth muscle dysfunction syndrome (SMDS) due to heterozygous ACTA2 arginine 179 alterations is characterized by patent ductus arteriosus, vasculopathy (aneurysm and occlusive lesions), pulmonary arterial hypertension, and other complications in smooth muscle-dependent organs. We sought to define the clinical history of SMDS to develop recommendations for evaluation and management. Medical records of 33 patients with SMDS (median age 12 years) were abstracted and analyzed. All patients had congenital mydriasis and related pupillary abnormalities at birth and presented in infancy with a patent ductus arteriosus or aortopulmonary window. Patients had cerebrovascular disease characterized by small vessel disease (hyperintense periventricular white matter lesions; 95%), intracranial artery stenosis (77%), ischemic strokes (27%), and seizures (18%). Twelve (36%) patients had thoracic aortic aneurysm repair or dissection at median age of 14 years and aortic disease was fully penetrant by the age of 25 years. Three (9%) patients had axillary artery aneurysms complicated by thromboembolic episodes. Nine patients died between the ages of 0.5 and 32 years due to aortic, pulmonary, or stroke complications, or unknown causes. Based on these data, recommendations are provided for the surveillance and management of SMDS to help prevent early-onset life-threatening complications

    PB1-F2 Proteins from H5N1 and 20th Century Pandemic Influenza Viruses Cause Immunopathology

    Get PDF
    With the recent emergence of a novel pandemic strain, there is presently intense interest in understanding the molecular signatures of virulence of influenza viruses. PB1-F2 proteins from epidemiologically important influenza A virus strains were studied to determine their function and contribution to virulence. Using 27-mer peptides derived from the C-terminal sequence of PB1-F2 and chimeric viruses engineered on a common background, we demonstrated that induction of cell death through PB1-F2 is dependent upon BAK/BAX mediated cytochrome c release from mitochondria. This function was specific for the PB1-F2 protein of A/Puerto Rico/8/34 and was not seen using PB1-F2 peptides derived from past pandemic strains. However, PB1-F2 proteins from the three pandemic strains of the 20th century and a highly pathogenic strain of the H5N1 subtype were shown to enhance the lung inflammatory response resulting in increased pathology. Recently circulating seasonal influenza A strains were not capable of this pro-inflammatory function, having lost the PB1-F2 protein's immunostimulatory activity through truncation or mutation during adaptation in humans. These data suggest that the PB1-F2 protein contributes to the virulence of pandemic strains when the PB1 gene segment is recently derived from the avian reservoir

    Natural orifice surgery: initial clinical experience

    Get PDF
    Natural orifice translumenal endoscopic surgery (NOTES) has moved quickly from preclinical investigation to clinical implementation. However, several major technical problems limit clinical NOTES including safe access, retraction and dissection of the gallbladder, and clipping of key structures. This study aimed to identify challenges and develop solutions for NOTES during the initial clinical experience. Under an Institutional Review Board (IRB)-approved protocol, patients consented to a natural orifice operation for removal of either the gallbladder or the appendix via either the vagina or the stomach using a single umbilical trocar for safety and assistance. Nine transvaginal cholecystectomies, one transgastric appendectomy, and one transvaginal appendectomy have been completed to date. All but one patient were discharged on postoperative day 1 as per protocol. No complications occurred. The limited initial evidence from this study demonstrates that NOTES is feasible and safe. The addition of an umbilical trocar is a bridge allowing safe performance of NOTES procedures until better instruments become available. The addition of a flexible long grasper through the vagina and a flexible operating platform through the stomach has enabled the performance of NOTES in a safe and easily reproducible manner. The use of a uterine manipulator has facilitated visualization of the cul de sac in women with a uterus to allow for safe transvaginal access

    Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer

    Get PDF
    Clinical resistance to the second-generation antiandrogen enzalutamide in castration resistant prostate cancer (CRPC), despite persistent androgen receptor (AR) activity in tumors, highlights the unmet medical need for next generation antagonists. We have identified and characterized tetra-aryl cyclobutanes (CBs) as a new class of competitive AR antagonists that exhibit a unique mechanism of action. These CBs are structurally distinct from current antiandrogens (hydroxyflutamide, bicalutamide, and enzalutamide), and inhibit AR-mediated gene expression, cell proliferation, and tumor growth in several models of CRPC. Conformational profiling revealed that CBs stabilize an AR conformation resembling an unliganded receptor. Using a variety of techniques, it was determined that the AR:CB complex was not recruited to AR-regulated promoters and, like apo AR, remains sequestered in the cytoplasm bound to heat shock proteins. Thus, we have identified third generation AR antagonists whose unique mechanism of action suggests that they may have therapeutic potential in CRPC
    corecore