240 research outputs found

    Admixture Mapping of African–American Women in the AMBER Consortium Identifies New Loci for Breast Cancer and Estrogen-Receptor Subtypes

    Get PDF
    Recent genetic admixture coupled with striking differences in incidence of estrogen receptor (ER) breast cancer subtypes, as well as severity, between women of African and European ancestry, provides an excellent rationale for performing admixture mapping in African American women with breast cancer risk. We performed the largest breast cancer admixture mapping study with in African American women to identify novel genomic regions associated with the disease. We conducted a genome-wide admixture scan using 2,624 autosomal ancestry informative markers (AIMs) in 3,629 breast cancer cases (including 1,968 ER-positive, 1093 ER-negative, and 601 triple-negative) and 4,658 controls from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium, a collaborative study of four large geographically different epidemiological studies of breast cancer in African American women. We used an independent case-control study to test for SNP association in regions with genome-wide significant admixture signals. We found two novel genome-wide significant regions of excess African ancestry, 4p16.1 and 17q25.1, associated with ER-positive breast cancer. Two regions known to harbor breast cancer variants, 10q26 and 11q13, were also identified with excess of African ancestry. Fine-mapping of the identified genome-wide significant regions suggests the presence of significant genetic associations with ER-positive breast cancer in 4p16.1 and 11q13. In summary, we identified three novel genomic regions associated with breast cancer risk by ER status, suggesting that additional previously unidentified variants may contribute to the racial differences in breast cancer risk in the African American population

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease

    The impact of FADS genetic variants on ω6 polyunsaturated fatty acid metabolism in African Americans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arachidonic acid (AA) is a long-chain omega-6 polyunsaturated fatty acid (PUFA) synthesized from the precursor dihomo-gamma-linolenic acid (DGLA) that plays a vital role in immunity and inflammation. Variants in the Fatty Acid Desaturase (<it>FADS</it>) family of genes on chromosome 11q have been shown to play a role in PUFA metabolism in populations of European and Asian ancestry; no work has been done in populations of African ancestry to date.</p> <p>Results</p> <p>In this study, we report that African Americans have significantly higher circulating levels of plasma AA (p = 1.35 × 10<sup>-48</sup>) and lower DGLA levels (p = 9.80 × 10<sup>-11</sup>) than European Americans. Tests for association in N = 329 individuals across 80 nucleotide polymorphisms (SNPs) in the Fatty Acid Desaturase (<it>FADS</it>) locus revealed significant association with AA, DGLA and the AA/DGLA ratio, a measure of enzymatic efficiency, in both racial groups (peak signal p = 2.85 × 10<sup>-16 </sup>in African Americans, 2.68 × 10<sup>-23 </sup>in European Americans). Ancestry-related differences were observed at an upstream marker previously associated with AA levels (rs174537), wherein, 79-82% of African Americans carry two copies of the G allele compared to only 42-45% of European Americans. Importantly, the allelic effect of the G allele, which is associated with <it>enhanced </it>conversion of DGLA to AA, on enzymatic efficiency was similar in both groups.</p> <p>Conclusions</p> <p>We conclude that the impact of <it>FADS </it>genetic variants on PUFA metabolism, specifically AA levels, is likely more pronounced in African Americans due to the larger proportion of individuals carrying the genotype associated with increased FADS1 enzymatic conversion of DGLA to AA.</p

    Quality of MALDI-TOF Mass Spectra in Routine Diagnostics: Results from an International External Quality Assessment including 36 Laboratories from 12 countries using 47 challenging bacterial strains.

    Get PDF
    OBJECTIVE MALDI-TOF MS is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are: number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it. METHODS For baseline MSQ assessment, 47 diverse bacterial strains which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared. RESULTS At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [5, 25]), reproducibility between technical replicates (range = [55%, 86%]), and measurement error (range = [147 parts per million (ppm), 588ppm]). As a general trend, the spectral quality was improved after the intervention for devices which yielded low MSQs in the baseline assessment: for 4/5 devices with a high measurement error, the measurement precision was improved (p-values<0.001, paired Wilcoxon test); for 6/10 devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values<0.001, paired Wilcoxon test). CONCLUSION We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this EQA requires further study

    Lupus risk variants in the PXK locus alter B-cell receptor internalization

    Get PDF
    Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3' UTR of PXK. The strongest association was found at rs6445972 with P &lt; 4.62 × 10-10, OR 0.81 (0.75 - 0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity

    Genome-wide association studies in women of African ancestry identified 3q26.21 as a novel susceptibility locus for oestrogen receptor negative breast cancer

    Get PDF
    Multiple breast cancer loci have been identified in previous genome-wide association studies, but they were mainly conducted in populations of European ancestry. Women of African ancestry are more likely to have young-onset and oestrogen receptor (ER) negative breast cancer for reasons that are unknown and understudied. To identify genetic risk factors for breast cancer in women of African descent, we conducted a meta-analysis of two genome-wide association studies of breast cancer; one study consists of 1,657 cases and 2,029 controls genotyped with Illumina's HumanOmni2.5 BeadChip and the other study included 3,016 cases and 2,745 controls genotyped using Illumina Human1M-Duo BeadChip. The top 18,376 single nucleotide polymorphisms (SNP) from the meta-analysis were replicated in the third study that consists of 1,984 African Americans cases and 2,939 controls. We found that SNP rs13074711, 26.5 Kb upstream of TNFSF10 at 3q26.21, was significantly associated with risk of oestrogen receptor (ER)-negative breast cancer (odds ratio [OR]=1.29, 95% CI: 1.18-1.40; P = 1.8 × 10 (-) (8)). Functional annotations suggest that the TNFSF10 gene may be involved in breast cancer aetiology, but further functional experiments are needed. In addition, we confirmed SNP rs10069690 was the best indicator for ER-negative breast cancer at 5p15.33 (OR = 1.30; P = 2.4 × 10 (-) (10)) and identified rs12998806 as the best indicator for ER-positive breast cancer at 2q35 (OR = 1.34; P = 2.2 × 10 (-) (8)) for women of African ancestry. These findings demonstrated additional susceptibility alleles for breast cancer can be revealed in diverse populations and have important public health implications in building race/ethnicity-specific risk prediction model for breast cancer

    Characterizing Genetic Susceptibility to Breast Cancer in Women of African Ancestry

    Get PDF
    Background: Genome-wide association studies have identified approximately 100 common genetic variants associated with breast cancer risk, the majority of which were discovered in women of European ancestry. Because of different patterns of linkage disequilibrium, many of these genetic markers may not represent signals in populations of African ancestry. Methods: We tested 74 breast cancer risk variants and conducted fine-mapping of these susceptibility regions in 6,522 breast cancer cases and 7,643 controls of African ancestry from three genetic consortia (AABC, AMBER, and ROOT). Results: Fifty-four of the 74 variants (73%) were found to have ORs that were directionally consistent with those previously reported, of which 12 were nominally statistically significant ( P < 0.05). Through fine-mapping, in six regions ( 3p24, 12p11, 14q13, 16q12/FTO, 16q23, 19p13 ), we observed seven markers that better represent the underlying risk variant for overall breast cancer or breast cancer subtypes, whereas in another two regions ( 11q13, 16q12/TOX3 ), we identified suggestive evidence of signals that are independent of the reported index variant. Overlapping chromatin features and regulatory elements suggest that many of the risk alleles lie in regions with biological functionality. Conclusions: Through fine-mapping of known susceptibility regions, we have revealed alleles that better characterize breast cancer risk in women of African ancestry. Impact: The risk alleles identified represent genetic markers for modeling and stratifying breast cancer risk in women of African ancestry. Cancer Epidemiol Biomarkers Prev; 26(7); 1-11. ©2017 AACR

    Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility

    Get PDF
    Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10-8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10-7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10-7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10-4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE
    corecore