10,963 research outputs found

    Acute effects of Hibiscus sabdariffa calyces on postprandial blood pressure, vascular function, blood lipids, biomarkers of insulin resistance and inflammation in humans

    Get PDF
    The acute impact of Hibiscus sabdariffa calyces (HSC) extract on postprandial vascular function and other cardiometabolic risk factors have not been studied previously. This study investigated the acute impact of HSC extract consumption on blood pressure (BP), vascular function and other cardiometabolic risk markers. Twenty-five men with 1% to 10% cardiovascular disease (CVD) risk (determined by QRISK 2) were randomised to consume either 250 mL of the aqueous extract of HSC or water with breakfast in a randomised, controlled, single-blinded, 2-meal cross-over study (ClinicalTrials.gov, NTC02165553) with a two weeks washout period between study days. BP was measured at baseline and hourly for 4 h. Flow mediated dilatation (FMD) of the branchial artery was measured at baseline, 2 and 4 h post intervention drink consumption. Acute consumption of aqueous extract of HSC caused a significant increase in % FMD ( < 0.001), a non-significant decrease in systolic BP (SBP) and diastolic BP (DBP); non-significant increase in urinary and plasma nitric oxide (NOx) and reduced response of serum glucose, plasma insulin, serum triacylglycerol and C-reactive protein (CRP) levels; significant ( = 0.026) improvement in the area under systemic antioxidant response curve (0 to 2 h); no significant changes in arterial stiffness following the acute consumption of the extract of HSC. Gallic acid, 4-O-methylgallic acid, 3-O-methylgallic acid and hippuric acid reached a maximum plasma concentration at 1 to 2 h post consumption of the extract of HSC. The extract of HSC improved postprandial vascular function and may be a useful dietary strategy to reduce endothelial dysfunction and CVD risk, although this requires confirmation

    Landscape of standing variation for tandem duplications in Drosophila yakuba and Drosophila simulans

    Full text link
    We have used whole genome paired-end Illumina sequence data to identify tandem duplications in 20 isofemale lines of D. yakuba, and 20 isofemale lines of D. simulans and performed genome wide validation with PacBio long molecule sequencing. We identify 1,415 tandem duplications that are segregating in D. yakuba as well as 975 duplications in D. simulans, indicating greater variation in D. yakuba. Additionally, we observe high rates of secondary deletions at duplicated sites, with 8% of duplicated sites in D. simulans and 17% of sites in D. yakuba modified with deletions. These secondary deletions are consistent with the action of the large loop mismatch repair system acting to remove polymorphic tandem duplication, resulting in rapid dynamics of gain and loss in duplicated alleles and a richer substrate of genetic novelty than has been previously reported. Most duplications are present in only single strains, suggesting deleterious impacts are common. D. simulans shows larger numbers of whole gene duplications in comparison to larger proportions of gene fragments in D. yakuba. D. simulans displays an excess of high frequency variants on the X chromosome, consistent with adaptive evolution through duplications on the D. simulans X or demographic forces driving duplicates to high frequency. We identify 78 chimeric genes in D. yakuba and 38 chimeric genes in D. simulans, as well as 143 cases of recruited non-coding sequence in D. yakuba and 96 in D. simulans, in agreement with rates of chimeric gene origination in D. melanogaster. Together, these results suggest that tandem duplications often result in complex variation beyond whole gene duplications that offers a rich substrate of standing variation that is likely to contribute both to detrimental phenotypes and disease, as well as to adaptive evolutionary change.Comment: Revised Version- Accepted at Molecular Biology and Evolutio

    Can continental bogs with stand the pressure due to climate change?

    Get PDF
    Not all peatlands are alike. Theoretical and process based models suggest that ombrogenic, oligotrophic peatlands can withstand the pressures due to climate change because of the feedbacks among ecosystem production, decomposition and water storage. Although there have been many inductive explanations inferring from paleo-records, there is a lack of deductive empirical tests of the models predictions of these systems’ stability and there are few records of the changes in the net ecosystem carbon balance (NECB) of peatlands that are long enough to examine the dynamics of the NECB in relation to climate variability. Continuous measurements of all the components of the NECB and the associated general climatic and environmental conditions have been made at the Mer Bleue (MB) peatland, a large, 28 km2, 5 m deep, raised ombro-oligotrophic, shrub and Sphagnum covered bog, near Ottawa, Canada from May 1, 1998 until the present. The sixteen-year daily CO2, CH4, and DOC flux and NECB covers a wide range of variability in peatland water storage from very dry to very wet growing seasons. We used the MB data to test the extent of MB peatland’s stability and the strength of the underlying key feedback between the NECB and changes in water storage projected by the models. In 2007 we published a six-year (1999-2004) net ecosystem carbon balance (NECB) for MB of ∼22 ± 40 g C m-2 yr-1, but we have since recalculated the 1998-2004 NECB to be 32 ± 40 g C m-2 yr-1 based on a reanalyzed average NEP of 51 ± 41 g C m-2 yr-1. Over the same period the net loss of C via the CH4 and DOC fluxes were -4 ± 1 and -15 ± 3 g C m-2 yr-1. The 1998-2004 six-year MB average NECB is similar to the long-term C accumulation rate, estimated from MB peat cores, for the last 3,000 years. The post 2004 MB NEP has increased to an average of ∼96 ± 32 g C m-2 yr-1 largely to there being generally wetter growing seasons. The losses of C via DOC (18 ± 1 g C m-2 yr-1) and CH4 (7 ± 4 g C m-2 yr-1) while showing considerable year-to-year variability are not significantly different post 2004. Hence, the proportional loss of C as DOC and CH4 in the MB NECB is slightly less post-2004 than it was before 2004 though the cumulative errors preclude statistically differences. As a result the MB NECB has increased to 79 ± 29 g C m-2 yr-1 post 2004 yielding a 14 year contemporary NECB of 56 ± 36 g C m-2 yr-1, which is double the long-term accumulation rate of C. The variability in the annual NECB and growing season mean NEP for the MB bog can be explained (r2 = 0.35, p \u3c 0.01) by the variability in growing season water table depth. These results suggest the carbon balance – water table feedback is sufficient enough to create stability in continental bogs so they will withstand a considerable amount of climate change

    The identification of markers of macrophage differentiation in PMA-stimulated THP-1 Cells and monocyte-derived macrophages

    Get PDF
    Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD3) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells

    Extranodal NK/T-cell lymphoma presenting with primary cardiac involvement

    Get PDF
    Primary cardiac lymphoma is extremely uncommon. We report a case of a 54 year old Caucasian male with a history of non-small cell lung cancer treated by surgical resection who presented with chest pain and dyspnea on exertion. Computerized tomography (CT) imaging confirmed a 7.8×3.8 cm right atrial soft tissue mass infiltrating the lateral wall of the right atrium, and a 5 cm pericardiophrenic mass. Echocardiography confirmed a moderate pericardial effusion without tamponade physiology. Percutaneous biopsy of the pericardiophrenic mass revealed pathologic features diagnostic of NK/T-cell lymphoma. He received CHOP chemotherapy with some improvement in symptoms, but experienced radiographic progression after 2 cycles. He received palliative involved field radiotherapy but developed new sites of progressive disease within the abdomen and died shortly after completing radiotherapy. NK/T-cell lymphomas are aggressive tumors that may present with unusual extranodal disease sites. Prompt diagnosis with consideration for referral to a specialty center with experience in treatment of these rare tumors may offer the greatest potential for improving treatment outcomes

    Unique behavioral and neurochemical effects induced by repeated adolescent consumption of caffeine-mixed alcohol in C57BL/6 mice.

    Get PDF
    The number of highly caffeinated products has increased dramatically in the past few years. Among these products, highly caffeinated energy drinks are the most heavily advertised and purchased, which has resulted in increased incidences of co-consumption of energy drinks with alcohol. Despite the growing number of adolescents and young adults reporting caffeine-mixed alcohol use, knowledge of the potential consequences associated with co-consumption has been limited to survey-based results and in-laboratory human behavioral testing. Here, we investigate the effect of repeated adolescent (post-natal days P35-61) exposure to caffeine-mixed alcohol in C57BL/6 mice on common drug-related behaviors such as locomotor sensitivity, drug reward and cross-sensitivity, and natural reward. To determine changes in neurological activity resulting from adolescent exposure, we monitored changes in expression of the transcription factor ΔFosB in the dopaminergic reward pathway as a sign of long-term increases in neuronal activity. Repeated adolescent exposure to caffeine-mixed alcohol exposure induced significant locomotor sensitization, desensitized cocaine conditioned place preference, decreased cocaine locomotor cross-sensitivity, and increased natural reward consumption. We also observed increased accumulation of ΔFosB in the nucleus accumbens following repeated adolescent caffeine-mixed alcohol exposure compared to alcohol or caffeine alone. Using our exposure model, we found that repeated exposure to caffeine-mixed alcohol during adolescence causes unique behavioral and neurochemical effects not observed in mice exposed to caffeine or alcohol alone. Based on similar findings for different substances of abuse, it is possible that repeated exposure to caffeine-mixed alcohol during adolescence could potentially alter or escalate future substance abuse as means to compensate for these behavioral and neurochemical alterations. © 2016 Robins et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    High-Fat Feeding Does Not Disrupt Daily Rhythms in Female Mice Because of Protection by Ovarian Hormones

    Get PDF
    Obesity in women is increased by the loss of circulating estrogen after menopause. Shift work, which disrupts circadian rhythms, also increases the risk for obesity. It is not known whether ovarian hormones interact with the circadian system to protect females from obesity. During high-fat feeding, male C57BL/6J mice develop profound obesity and disruption of daily rhythms. Since C57BL/6J female mice did not develop diet-induced obesity (during 8 weeks of high-fat feeding), we first determined if daily rhythms in female mice were resistant to disruption from high-fat diet. We fed female PERIOD2:LUCIFERASE mice 45% high-fat diet for 1 week and measured daily rhythms. Female mice retained robust rhythms of eating behavior and locomotor activity during high-fat feeding that were similar to chow-fed females. In addition, the phase of the liver molecular timekeeping (PER2:LUC) rhythm was not altered by high-fat feeding in females. To determine if ovarian hormones protected daily rhythms in female mice from high-fat feeding, we analyzed rhythms in ovariectomized mice. During high-fat feeding, the amplitudes of the eating behavior and locomotor activity rhythms were reduced in ovariectomized females. Liver PER2:LUC rhythms were also advanced by ~4 h by high-fat feeding, but not chow, in ovariectomized females. Together these data show circulating ovarian hormones protect the integrity of daily rhythms in female mice during high-fat feeding

    Functionalized carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery

    Get PDF
    AbstractCarbon nanotubes (CNTs) have long been regarded as promising carriers in biomedicine. Due to their high surface area and unique needle-like structure, CNTs are uniquely equipped to carry therapeutic molecules across biological membranes and, therefore, have been widely researched for use in theranostic applications. The attractive properties of the CNTs entice also their use in the brain environment. Cutting edge brain-specific therapies, capable of circumventing the physical and biochemical blockage of the blood-brain barrier, could be a precious tool to tackle brain disorders. With an increasing number of applications and expanding production, the effects of direct and indirect exposure to CNTs on cellular and molecular levels and more globally the general health, must be carefully assessed and limited.In this chapter, we review the most recent trends on the development and application of CNT-based nanotechnologies, with a particular focus on the carrier properties, cell internalisation and processing, and mechanisms involved in cell toxicity. Novel approaches for CNT-based systemic therapeutic brain delivery following intravenous administration are also reviewed. Moreover, we highlight fundamental questions that should be addressed in future research involving CNTs, aiming at achieving its safe introduction into the clinics
    • …
    corecore