6 research outputs found

    Characterization of a Culturable Alphaproteobacterial Symbiont Common to Many Marine Sponges and Evidence for Vertical Transmission via Sponge Larvae

    No full text
    A closely related group of alphaproteobacteria were found to be present in seven genera of marine sponges from several locations and were shown to be transferred between sponge generations through the larvae in one of these sponges. Isolates of the alphaproteobacterium were cultured from the sponges Axinella corrugata, Mycale laxissima, Monanchora unguifera, and Niphates digitalis from Key Largo, Florida; Didiscus oxeata and Monanchora unguifera from Discovery Bay, Jamaica; an Acanthostronglyophora sp. from Manado, Indonesia; and Microciona prolifera from the Cheasapeake Bay in Maryland. Isolates were very similar to each other on the basis of 16S rRNA gene sequence (>99% identity) and are closely related to Pseudovibrio denitrificans. The bacterium was never isolated from surrounding water samples and was cultured from larvae of M. laxissima, indicating that it is a vertically transmitted symbiont in this sponge. Denaturing gradient gel electrophoresis, 16S rRNA gene clone library analysis, and fluorescent in situ hybridization with probes specific to the alphaproteobacterium confirmed the presence of this bacterium in the M. laxissima larvae. The alphaproteobacterium was densely associated with the larvae rather than being evenly distributed throughout the mesohyl. This is the first report of the successful culture of a bacterial symbiont of a sponge that is transferred through the gametes

    Microbial Diversity Associated with Odor Modification for Production of Fertilizers from Chicken Litter

    No full text
    Litter from the chicken industry can present several environmental challenges, including offensive odors and runoff into waterways leading to eutrophication. An economically viable solution to the disposal of waste from chicken houses is treatment to produce a natural, granulated fertilizer that can be commercially marketed for garden and commercial use. Odor of the final product is important in consumer acceptance, and an earthy odor is desirable. By understanding and manipulating the microbial processes occurring during this process, it may be possible to modify the odors produced. Geosmin and related volatiles produced by soil actinomycetes are responsible for earthy odors, and actinomycetes are likely to be present in the composting manure. Bacterial communities at each stage of the process were analyzed by culturing studies and denaturing gradient gel electrophoresis (DGGE). The processing steps changed the culturable bacterial community, but the total community was shown by DGGE to be stable throughout the process. A local agricultural soil was analyzed in parallel as a potential source of geosmin-producing actinomycetes. This agricultural soil had higher microbial diversity than the compost at both the culturable and the molecular levels. Actinomycete bacteria were isolated and analyzed by AromaTrax, a gas chromatography-olfactometry system. This system enables the odor production of individual isolates to be monitored, allowing for rational selection of strains for augmentation experiments to improve the odor of the final fertilizer product

    Heterologous expression of heterotrophic nitrification genes

    No full text
    Paracoccus denitrificans is a heterotrophic organism capable of oxidizing ammonia to nitrite during growth on an organic carbon and energy source. This pathway, termed heterotrophic nitrification, requires the concerted action of an ammonia monooxygenase (AMO) and hydroxylamine oxidase (HAO). The genes required for heterotrophic nitrification have been isolated by introducing a Pa. denitrificans genomic library into Pseudomonas putida and screening for the accumulation of nitrite. In contrast to the situation in chemolithoautotrophic ammonia oxidizers, the genes encoding AMO and HAO are present in single linked copies in the genome of Pa. denitrificans. AMO from Pa. denitrificans expressed in Ps. putida is capable of oxidizing ethene (ethylene) to epoxyethane (ethylene oxide), which is indicative of a relaxed substrate specificity. Further, when expressed in the methylotroph Methylobacterium extorquens AM1, the AMO endows on this organism the ability to grow on ethene and methane. Thus, the Pa. denitrificans AMO is capable of oxidizing methane to methanol, as is the case for the AMO from Nitrosomonas europaea. The heterotrophic nitrification genes are moderately toxic in M. extorquens, more toxic in Ps. putida, and non-toxic in Escherichia coli. Toxicity is due to the activity of the gene products in M. extorquens, and both expression and activity in Ps. putida. This is the first time that the genes encoding an active AMO have been expressed in a heterologous host

    Changes in Bacterial Communities of the Marine Sponge Mycale laxissima on Transfer into Aquaculture▿ †‡

    No full text
    The changes in bacterial communities associated with the marine sponge Mycale laxissima on transfer to aquaculture were studied using culture-based and molecular techniques. M. laxissima was maintained alive in flowthrough and closed recirculating aquaculture systems for 2 years and 1 year, respectively. The bacterial communities associated with wild and aquacultured sponges, as well as the surrounding water, were assessed using 16S rRNA gene clone library analysis and denaturing gradient gel electrophoresis (DGGE). Bacterial richness and diversity were measured using DOTUR computer software, and clone libraries were compared using S-LIBSHUFF. DGGE analysis revealed that the diversity of the bacterial community of M. laxissima increased when sponges were maintained in aquaculture and that bacterial communities associated with wild and aquacultured M. laxissima were markedly different than those of the corresponding surrounding water. Clone libraries of bacterial 16S rRNA from sponges confirmed that the bacterial communities changed during aquaculture. These communities were significantly different than those of seawater and aquarium water. The diversity of bacterial communities associated with M. laxissima increased significantly in aquaculture. Our work shows that it is important to monitor changes in bacterial communities when examining the feasibility of growing sponges in aquaculture systems because these communities may change. This could have implications for the health of sponges or for the production of bioactive compounds by sponges in cases where these compounds are produced by symbiotic bacteria rather than by the sponges themselves
    corecore