6 research outputs found

    Soluble CD89 is a critical factor for mesangial proliferation in childhood IgA nephropathy

    No full text
    International audienceChildhood IgA nephropathy (IgAN) includes a wide spectrum of clinical presentations, from isolated hematuria to acute nephritis with rapid loss of kidney function. In adults, IgAN is an autoimmune disease and its pathogenesis involves galactose deficient (Gd) IgA1, IgG anti-Gd-IgA1 autoantibodies and the soluble IgA Fc receptor (CD89). However, implication of such factors, notably soluble CD89, in childhood IgAN pathogenesis remains unclear. Here, we studied these biomarkers in a cohort of 67 patients with childhood IgAN and 42 pediatric controls. While Gd-IgA1 was only moderately increased in patient plasma, levels of circulating IgA complexes (soluble CD89-IgA and IgG-IgA) and free soluble CD89 were markedly increased in childhood IgAN. Soluble CD89-IgA1 complexes and free soluble CD89 correlated with proteinuria, as well as histological markers of disease activity: mesangial, endocapillary hypercellularity and cellular crescents. Soluble CD89 was found in patient's urine but not in urine from pediatric controls. Mesangial deposits of soluble CD89 were detected in biopsies from patients with childhood IgAN. Serum chromatographic fractions containing covalently linked soluble CD89-IgA1 complexes or free soluble CD89 from patients induced mesangial cell proliferation in vitro in a soluble CD89-dependent manner. Recombinant soluble CD89 induced mesangial cell proliferation in vitro which was inhibited by free soluble recombinant CD71 (also a mesangial IgA receptor) or mTOR blockers. Interestingly, injection of recombinant soluble CD89 induced marked glomerular proliferation and proteinuria in mice expressing human IgA1. Thus, free and IgA1-complexed soluble CD89 are key players in mesangial proliferation. Hence, our findings suggest that soluble CD89 plays an essential role in childhood IgAN pathogenesis making it a potential biomarker and therapeutic target

    Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice

    No full text
    Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. IgA is mainly produced by the gut-associated lymphoid tissue (GALT). Both experimental and clinical data suggest a role of the gut microbiota in this disease. We aimed to determine if an intervention targeting the gut microbiota could impact the development of disease in a humanized mouse model of IgAN, the α1KI-CD89Tg mice

    PD-L1- and IL-4-expressing basophils promote pathogenic accumulation of T follicular helper cells in lupus

    No full text
    International audienceAbstract Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by anti-nuclear autoantibodies whose production is promoted by autoreactive T follicular helper (TFH) cells. During SLE pathogenesis, basophils accumulate in secondary lymphoid organs (SLO), amplify autoantibody production and disease progression through mechanisms that remain to be defined. Here, we provide evidence for a direct functional relationship between TFH cells and basophils during lupus pathogenesis, both in humans and mice. PD-L1 upregulation on basophils and IL-4 production are associated with TFH and TFH2 cell expansions and with disease activity. Pathogenic TFH cell accumulation, maintenance, and function in SLO were dependent on PD-L1 and IL-4 in basophils, which induced a transcriptional program allowing TFH2 cell differentiation and function. Our study establishes a direct mechanistic link between basophils and TFH cells in SLE that promotes autoantibody production and lupus nephritis

    Transglutaminase is essential for IgA nephropathy development acting through IgA receptors.

    Get PDF
    International audienceIgA nephropathy (IgAN) is a common cause of renal failure worldwide. Treatment is limited because of a complex pathogenesis, including unknown factors favoring IgA1 deposition in the glomerular mesangium. IgA receptor abnormalities are implicated, including circulating IgA-soluble CD89 (sCD89) complexes and overexpression of the mesangial IgA1 receptor, TfR1 (transferrin receptor 1). Herein, we show that although mice expressing both human IgA1 and CD89 displayed circulating and mesangial deposits of IgA1-sCD89 complexes resulting in kidney inflammation, hematuria, and proteinuria, mice expressing IgA1 only displayed endocapillary IgA1 deposition but neither mesangial injury nor kidney dysfunction. sCD89 injection into IgA1-expressing mouse recipients induced mesangial IgA1 deposits. sCD89 was also detected in patient and mouse mesangium. IgA1 deposition involved a direct binding of sCD89 to mesangial TfR1 resulting in TfR1 up-regulation. sCD89-TfR1 interaction induced mesangial surface expression of TGase2 (transglutaminase 2), which in turn up-regulated TfR1 expression. In the absence of TGase2, IgA1-sCD89 deposits were dramatically impaired. These data reveal a cooperation between IgA1, sCD89, TfR1, and TGase2 on mesangial cells needed for disease development. They demonstrate that TGase2 is responsible for a pathogenic amplification loop facilitating IgA1-sCD89 deposition and mesangial cell activation, thus identifying TGase2 as a target for therapeutic intervention in this disease
    corecore