538 research outputs found

    Genetic risk score for adult body mass index associations with childhood and adolescent weight gain in an African population

    Get PDF
    Abstract Background Ninety-seven independent single nucleotide polymorphisms (SNPs) are robustly associated with adult body mass index (BMI kg/m2) in Caucasian populations. The relevance of such variants in African populations at different stages of the life course (such as childhood) is unclear. We tested whether a genetic risk score composed of the aforementioned SNPs was associated with BMI from infancy to early adulthood. We further tested whether this genetic effect was mediated by conditional weight gain at different growth periods. We used data from the Birth to Twenty Plus Cohort (Bt20+), for 971 urban South African black children from birth to 18 years. DNA was collected at 13 years old and was genotyped using the Metabochip (Illumina) array. The weighted genetic risk score (wGRS) for BMI was constructed based on 71 of the 97 previously reported SNPs. Results The cross-sectional association between the wGRS and BMI strengthened with age from 5 to 18 years. The significant associations were observed from 11 to 18 years, and peak effect sizes were observed at 13 and 14 years of age. Results from the linear mixed effects models showed significant interactions between the wGRS and age on longitudinal BMI but no such interactions were observed in sex and the wGRS. A higher wGRS was associated with an increased relative risk of belonging to the early onset obese longitudinal BMI trajectory (relative risk = 1.88; 95%CI 1.28 to 2.76) compared to belonging to a normal longitudinal BMI trajectory. Adolescent conditional relative weight gain had a suggestive mediation effect of 56% on the association between wGRS and obesity risk at 18 years. Conclusions The results suggest that genetic susceptibility to higher adult BMI can be tracked from childhood in this African population. This supports the notion that prevention of adult obesity should begin early in life. The genetic risk score combined with other non-genetic risk factors, such as BMI trajectory membership in our case, has the potential to be used to screen for early identification of individuals at increased risk of obesity and other related NCD risk factors in order to reduce the adverse health risk outcomes later

    Identification of Genomic Regions and Sources for Wheat Blast Resistance through GWAS in Indian Wheat Genotypes

    Get PDF
    Wheat blast (WB) is a devastating fungal disease that has recently spread to Bangladesh and poses a threat to the wheat production in India, which is the second-largest wheat producing country in the world. In this study, 350 Indian wheat genotypes were evaluated for WB resistance in 12 field experiments in three different locations, namely Jashore in Bangladesh and Quirusillas and Okinawa in Bolivia. Single nucleotide polymorphisms (SNPs) across the genome were obtained using DArTseq (R) technology, and 7554 filtered SNP markers were selected for a genome-wide association study (GWAS). All the three GWAS approaches used identified the 2NS translocation as the only major source of resistance, explaining up to 32% of the phenotypic variation. Additional marker-trait associations were located on chromosomes 2B, 3B, 4D, 5A and 7A, and the combined effect of three SNPs (2B_180938790, 7A_752501634 and 5A_618682953) showed better resistance, indicating their additive effects on WB resistance. Among the 298 bread wheat genotypes, 89 (29.9%) carried the 2NS translocation, the majority of which (60 genotypes) were CIMMYT introductions, and 29 were from India. The 2NS carriers with a grand mean WB index of 6.6 showed higher blast resistance compared to the non-2NS genotypes with a mean index of 46.5. Of the 52 durum wheats, only one genotype, HI 8819, had the 2NS translocation and was the most resistant, with a grand mean WB index of 0.93. Our study suggests that the 2NS translocation is the only major resistance source in the Indian wheat panel analysed and emphasizes the urgent need to identify novel non-2NS resistance sources and genomic regions

    Identification of genomic regions and sources for wheat blast resistance through GWAS in indian wheat genotypes

    Get PDF
    Wheat blast (WB) is a devastating fungal disease that has recently spread to Bangladesh and poses a threat to the wheat production in India, which is the second-largest wheat producing country in the world. In this study, 350 Indian wheat genotypes were evaluated for WB resistance in 12 field experiments in three different locations, namely Jashore in Bangladesh and Quirusillas and Okinawa in Bolivia. Single nucleotide polymorphisms (SNPs) across the genome were obtained using DArTseq® technology, and 7554 filtered SNP markers were selected for a genome-wide association study (GWAS). All the three GWAS approaches used identified the 2NS translocation as the only major source of resistance, explaining up to 32% of the phenotypic variation. Additional marker-trait associations were located on chromosomes 2B, 3B, 4D, 5A and 7A, and the combined effect of three SNPs (2B_180938790, 7A_752501634 and 5A_618682953) showed better resistance, indicating their additive effects on WB resistance. Among the 298 bread wheat genotypes, 89 (29.9%) carried the 2NS translocation, the majority of which (60 genotypes) were CIMMYT introductions, and 29 were from India. The 2NS carriers with a grand mean WB index of 6.6 showed higher blast resistance compared to the non-2NS genotypes with a mean index of 46.5. Of the 52 durum wheats, only one genotype, HI 8819, had the 2NS translocation and was the most resistant, with a grand mean WB index of 0.93. Our study suggests that the 2NS translocation is the only major resistance source in the Indian wheat panel analysed and emphasizes the urgent need to identify novel non-2NS resistance sources and genomic regions

    Genomic selection for wheat blast in a diversity panel, breeding panel and full-sibs panel

    Get PDF
    Wheat blast is an emerging threat to wheat production, due to its recent migration to South Asia and Sub-Saharan Africa. Because genomic selection (GS) has emerged as a promising breeding strategy, the key objective of this study was to evaluate it for wheat blast phenotyped at precision phenotyping platforms in Quirusillas (Bolivia), Okinawa (Bolivia) and Jashore (Bangladesh) using three panels: (i) a diversity panel comprising 172 diverse spring wheat genotypes, (ii) a breeding panel comprising 248 elite breeding lines, and (iii) a full-sibs panel comprising 298 full-sibs. We evaluated two genomic prediction models (the genomic best linear unbiased prediction or GBLUP model and the Bayes B model) and compared the genomic prediction accuracies with accuracies from a fixed effects model (with selected blast-associated markers as fixed effects), a GBLUP + fixed effects model and a pedigree relationships-based model (ABLUP). On average, across all the panels and environments analyzed, the GBLUP + fixed effects model (0.63 ± 0.13) and the fixed effects model (0.62 ± 0.13) gave the highest prediction accuracies, followed by the Bayes B (0.59 ± 0.11), GBLUP (0.55 ± 0.1), and ABLUP (0.48 ± 0.06) models. The high prediction accuracies from the fixed effects model resulted from the markers tagging the 2NS translocation that had a large effect on blast in all the panels. This implies that in environments where the 2NS translocation-based blast resistance is effective, genotyping one to few markers tagging the translocation is sufficient to predict the blast response and genome-wide markers may not be needed. We also observed that marker-assisted selection (MAS) based on a few blast-associated markers outperformed GS as it selected the highest mean percentage (88.5%) of lines also selected by phenotypic selection and discarded the highest mean percentage of lines (91.8%) also discarded by phenotypic selection, across all panels. In conclusion, while this study demonstrates that MAS might be a powerful strategy to select for the 2NS translocation-based blast resistance, we emphasize that further efforts to use genomic tools to identify non-2NS translocation-based blast resistance are critical

    Identification of new ABA-and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database

    Get PDF
    Abstract Sugarcane is generally propagated by cuttings of the stalk containing one or more lateral buds, which will develop into a new plant. The transition from the dormant into the active stage constitutes a complex phenomenon characterized by changes in accumulation of phytohormones and several other physiological aspects. Abscisic acid (ABA) and methyl-jasmonate (MeJA) are major signaling molecules, which influence plant development and stress responses. These plant regulators modulate gene expression with the participation of many transcriptional factors. Basic leucine zipper proteins (bZIPs) form a large family of transcriptional factors involved in a variety of plant physiological processes, such as development and responses to stress. Query sequences consisting of fulllength protein sequence of each of the Arabidopsis bZIP families were utilized to screen the sugarcane EST database (SUCEST) and 86 sugarcane assembled sequences (SAS) coding for bZIPs were identified. cDNA arrays and RNA-gel blots were used to study the expression of these sugarcane bZIP genes during early plantlet development and in response to ABA and MeJA. Six bZIP genes were found to be differentially expressed during development. ABA and MeJA modulated the expression of eight sugarcane bZIP genes. Our findings provide novel insights into the expression of this large protein family of transcriptional factors in sugarcane

    Convalescent plasma for COVID-19 in hospitalised patients : an open-label, randomised clinical trial

    Get PDF
    Background: The effects of convalescent plasma (CP) therapy in hospitalised patients with coronavirus disease 2019 (COVID-19) remain uncertain. This study investigates the effect of CP on clinical improvement in these patients. Methods: This is an investigator-initiated, randomised, parallel arm, open-label, superiority clinical trial. Patients were randomly (1:1) assigned to two infusions of CP plus standard of care (SOC) or SOC alone. The primary outcome was the proportion of patients with clinical improvement 28 days after enrolment. Results: A total of 160 (80 in each arm) patients (66.3% critically ill, 33.7% severely ill) completed the trial. The median (interquartile range (IQR)) age was 60.5 (48–68) years; 58.1% were male and the median (IQR) time from symptom onset to randomisation was 10 (8–12) days. Neutralising antibody titres >1:80 were present in 133 (83.1%) patients at baseline. The proportion of patients with clinical improvement on day 28 was 61.3% in the CP+SOC group and 65.0% in the SOC group (difference −3.7%, 95% CI −18.8–11.3%). The results were similar in the severe and critically ill subgroups. There was no significant difference between CP+SOC and SOC groups in pre-specified secondary outcomes, including 28-day mortality, days alive and free of respiratory support and duration of invasive ventilatory support. Inflammatory and other laboratory marker values on days 3, 7 and 14 were similar between groups. Conclusions: CP+SOC did not result in a higher proportion of clinical improvement on day 28 in hospitalised patients with COVID-19 compared to SOC alone

    Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100:a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundAccurate assessments of current and future fertility—including overall trends and changing population age structures across countries and regions—are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios.MethodsTo estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10–54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values—a metric assessing gain in forecasting accuracy—by comparing predicted versus observed ASFRs from the past 15 years (2007–21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline.FindingsDuring the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63–5·06) to 2·23 (2·09–2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137–147), declining to 129 million (121–138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1—canonically considered replacement-level fertility—in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7–29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59–2·08) in 2050 and 1·59 (1·25–1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6–43·1) in 2050 and 54·3% (47·1–59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions—decreasing, for example, in south Asia from 24·8% (23·7–25·8) in 2021 to 16·7% (14·3–19·1) in 2050 and 7·1% (4·4–10·1) in 2100—but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40–1·92) in 2050 and 1·62 (1·35–1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction.InterpretationFertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world.FundingBill & Melinda Gates Foundation
    • …
    corecore