44 research outputs found

    Chemoreception and neuroplasticity in respiratory circuits

    Get PDF
    The respiratory central pattern generator must respond to chemosensory cues to maintain oxygen (O2) and carbon dioxide (CO2) homeostasis in the blood and tissues. To do this, sensorial cells located in the periphery and central nervous system monitor the arterial partial pressure of O2 and CO2 and initiate respiratory and autonomic reflex adjustments in conditions of hypoxia and hypercapnia. In conditions of chronic intermittent hypoxia (CIH), repeated peripheral chemoreceptor input mediated by the nucleus of the solitary tract induces plastic changes in respiratory circuits that alter baseline respiratory and sympathetic motor outputs and result in chemoreflex sensitization, active expiration, and arterial hypertension. Herein, we explored the hypothesis that the CIH-induced neuroplasticity primarily consists of increased excitability of pre-inspiratory/inspiratory neurons in the pre-Bötzinger complex. To evaluate this hypothesis and elucidate neural mechanisms for the emergence of active expiration and sympathetic overactivity in CIH-treated animals, we extended a previously developed computational model of the brainstem respiratory-sympathetic network to reproduce experimental data on peripheral and central chemoreflexes post-CIH. The model incorporated neuronal connections between the 2nd-order NTS neurons and peripheral chemoreceptors afferents, the respiratory pattern generator, and sympathetic neurons in the rostral ventrolateral medulla in order to capture key features of sympathetic and respiratory responses to peripheral chemoreflex stimulation. Our model identifies the potential neuronal groups recruited during peripheral chemoreflex stimulation that may be required for the development of inspiratory, expiratory and sympathetic reflex responses. Moreover, our model predicts that pre-inspiratory neurons in the pre-Bötzinger complex experience plasticity of channel expression due to excessive excitation during peripheral chemoreflex. Simulations also show that, due to positive interactions between pre-inspiratory neurons in the pre-Bötzinger complex and expiratory neurons in the retrotrapezoid nucleus, increased excitability of the former may lead to the emergence of the active expiratory pattern at normal CO2 levels found after CIH exposure. We conclude that neuronal type specific neuroplasticity in the pre-Bötzinger complex induced by repetitive episodes of peripheral chemoreceptor activation by hypoxia may contribute to the development of sympathetic over-activity and hypertension

    Role of ventral medullary catecholaminergic neurons for respiratory modulation of sympathetic outflow in rats

    Get PDF
    Abstract Sympathetic activity displays rhythmic oscillations generated by brainstem inspiratory and expiratory neurons. Amplification of these rhythmic respiratory-related oscillations is observed in rats under enhanced central respiratory drive or during development of neurogenic hypertension. Herein, we evaluated the involvement of ventral medullary sympatho-excitatory catecholaminergic C1 neurons, using inhibitory Drosophila allatostatin receptors, for the enhanced expiratory-related oscillations in sympathetic activity in rats submitted to chronic intermittent hypoxia (CIH) and following activation of both peripheral (hypoxia) and central chemoreceptors (hypercapnia). Pharmacogenetic inhibition of C1 neurons bilaterally resulted in reductions of their firing frequency and amplitude of inspiratory-related sympathetic activity in rats in normocapnia, hypercapnia or after CIH. In contrast, hypercapnia or hypoxia-induced enhanced expiratory-related sympathetic oscillations were unaffected by C1 neuronal inhibition. Inhibition of C1 neurons also resulted in a significant fall in arterial pressure and heart rate that was similar in magnitude between normotensive and CIH hypertensive rats, but basal arterial pressure in CIH rats remained higher compared to controls. C1 neurons play a key role in regulating inspiratory modulation of sympathetic activity and arterial pressure in both normotensive and CIH hypertensive rats, but they are not involved in the enhanced late-expiratory-related sympathetic activity triggered by activation of peripheral or central chemoreceptors

    Cerebrovascular Variants and the Role of the Selfish Brain in Young-Onset Hypertension

    Get PDF
    Background: Variants in the posterior anatomy of the cerebral circulation are associated with hypertension and lower cerebral blood flow in midlife (age ≈55 years); however, whether these variants are a result of aging or long-term exposure to high blood pressure is unclear. Additionally, the role these variants play in early onset of hypertension (<40 years) and poor cerebral perfusion in this population is unknown. Methods: We retrospectively examined whether specific cerebrovascular variants (vertebral artery hypoplasia and absent/hypoplastic posterior communicating arteries (an incomplete posterior circle of Willis) measured via magnetic resonance angiography) were associated with a diagnosis of hypertension in 220 young adults (<40 years; n=164 primary hypertensive [mean age±SD, 32±6 years] and n=56 [30±6 years] normotensive adults). Whether cerebrovascular variants were associated with lower cerebral blood flow (phase-contrast angiography) was measured in the hypertensive group only (n=146). Results: Binary logistic regression (adjusted for age, sex, and body mass index) showed that vertebral artery hypoplasia with an incomplete posterior circle of Willis was associated with hypertension diagnosis (P<0.001, odds ratio; 11.79 [95% CI, 3.34–41.58]). Vertebral artery hypoplasia plus an incomplete circle of Willis was associated with lower cerebral blood flow in young adults with hypertension (P=0.0172). Conclusions: Vertebral artery hypoplasia plus an incomplete posterior circle of Willis independently predicts hypertension in young adults suggesting that this variant is not acquired with aging into midlife. Importantly this variant combination was associated with lower cerebral perfusion, which may have long-term consequences on cerebrovascular health in young adults with hypertension

    Antihypertensive Treatment Fails to Control Blood Pressure During Exercise

    Get PDF
    An exaggerated blood pressure (BP) response to maximal exercise is an independent risk factor for cardiovascular events and mortality. It is unclear whether treating BP to guideline recommended levels could normalize the rise in BP during exercise, which is mediated by the metaboreflex. We aimed to assess the BP response to incremental exercise testing and metaboreflex activation in treated–controlled hypertension (n=16), treated–uncontrolled hypertension (n=16), and untreated hypertension (n=11) and 16 control participants with normal BP (n=16). All groups were matched for age and body mass index. BP was measured during an incremental V o 2 peak test on a cycle ergometer and during metaboreflex isolation using postexercise ischemia. Data were analyzed using 2-way ANOVA with Tukey test for multiple comparisons. Aerobic fitness was similar among groups ( P =0.97). The rise in absolute systolic BP from baseline at peak exercise was similar in controlled, uncontrolled, and untreated hypertension but greater compared with normotensive controls (Δ71±3, 81±7, 79±8.5 versus 47±5 mm Hg; P =0.0001). Metaboreflex sensitivity was also similar in controlled, uncontrolled, and untreated hypertension but augmented compared with normotensive controls (Δsystolic BP: 21±2, 28±2, 25±3 versus 12±2 mm Hg; P &lt;0.0001). An amplified pressor response to exercise occurred in patients taking antihypertensive medication, despite having controlled BP at rest and was potentially caused (in part) by enhanced metaboreflex sensitivity. Poor BP control during exercise, partially mediated by the metaboreflex, may contribute to the heightened risk of an adverse cardiovascular event even in treated–controlled patients. </jats:p

    On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat

    Get PDF
    KEY POINTS: Spinally-projecting neurons of the rostral ventrolateral medulla (RVLM) determine sympathetic outflow to different territories of the body. Previous studies suggest the existence of RVLM neurons with distinct functional classes, such as neurons that target sympathetic nerves bound for functionally-similar tissue types (e.g. muscle vasculature). The existence of RVLM neurons with more general actions had not been critically tested. Using viral tracing, we show that a significant minority of RVLM neurons send axon collaterals to disparate spinal segments (T2 and T10 ). Furthermore, optogenetic activation of sympathetic premotor neurons projecting to lumbar spinal segments also produced activation of sympathetic nerves from rostral spinal segments that innervate functionally diverse tissues (heart and forelimb muscle). These findings suggest the existence of individual RVLM neurons for which the axons branch to drive sympathetic preganglionic neurons of more than one functional class and may be able to produce global changes in sympathetic activity. ABSTRACT: We investigate the extent of spinal axon collateralization of rat rostral ventrolateral medulla (RVLM) sympathetic premotor neurons and its functional consequences. In anatomical tracing experiments, two recombinant herpes viral vectors with retrograde tropism and expressing different fluorophores were injected into the intermediolateral column at upper thoracic and lower thoracic levels. Histological analysis revealed that ∌21% of RVLM bulbospinal neurons were retrogradely labelled by both vectors, indicating substantial axonal collateralization to disparate spinal segments. In functional experiments, another virus with retrograde tropism, a canine adenovirus expressing Cre recombinase, was injected into the left intermediolateral horn around the thoracolumbar junction, whereas a Cre-dependent viral vector encoding Channelrhodopsin2 under LoxP control was injected into the ipsilateral RVLM. In subsequent terminal experiments, blue laser light (473 nm × 20 ms pulses at 10 mW) was used to activate RVLM neurons that had been transduced by both vectors. Stimulus-locked activation, at appropriate latencies, was recorded in the following pairs of sympathetic nerves: forelimb and hindlimb muscle sympathetic fibres, as well as cardiac and either hindlimb muscle or lumbar sympathetic nerves. The latter result demonstrates that axon collaterals of lumbar-projecting RVLM neurons project to, and excite, both functionally similar (forelimb and hindlimb muscle) and functionally dissimilar (lumbar and cardiac) preganglionic neurons. Taken together, these findings show that the axons of a significant proportion of RVLM neurons collateralise widely within the spinal cord, and that they may excite preganglionic neurons of more than one functional class

    Variable role of carotid bodies in cardiovascular responses to exercise, hypoxia and hypercapnia in spontaneously hypertensive rats

    Get PDF
    The carotid body has recently emerged as a promising therapeutic target for treating cardiovascular disease, however the potential impact of carotid bodies removal on the dynamic cardiovascular responses to acute stressors such as exercise, hypoxia and hypercapnia in hypertension is an important safety consideration that has not been studied. We first validated a novel surgical approach to selectively resect the carotid bodies bilaterally (CBR) sparing the carotid sinus baroreflex. Second, we evaluated the impact of CBR on the cardiovascular responses to exercise, hypoxia and hypercapnia in the conscious, chronically instrumented spontaneously hypertensive (SH) rats. Our results confirm that our CBR technique successfully and selectively abolished the chemoreflex, whilst preserving carotid baroreflex function. CBR produced a sustained fall in arterial pressure in the SH rat of ~20 mmHg that persisted across both dark and light phases (P&lt;0.001), with baroreflex function curves resetting around lower arterial pressure levels. The cardiovascular and respiratory responses to moderate forced exercise were similar between CBR and Sham. In contrast, CBR abolished the pressor response to hypoxia seen in Sham animals, although the increases in heart rate and respiration were similar between Sham and CBR groups. Both the pressor and respiratory responses to 7% hypercapnia were augmented after CBR (P&lt;0.05) compared to sham. Our finding that the carotid bodies play a critical role in maintaining arterial pressure during hypoxia has important implications when considering resection therapy of the carotid body in disease states such as hypertension as well as heart failure with sleep apnoea

    Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow

    Get PDF
    Astrocytes provide neurons with essential metabolic and structural support, modulate neuronal circuit activity and may also function as versatile surveyors of brain milieu, tuned to sense conditions of potential metabolic insufficiency. Here we show that astrocytes detect falling cerebral perfusion pressure and activate CNS autonomic sympathetic control circuits to increase systemic arterial blood pressure and heart rate with the purpose of maintaining brain blood flow and oxygen delivery. Studies conducted in experimental animals (laboratory rats) show that astrocytes respond to acute decreases in brain perfusion with elevations in intracellular [Ca2+]. Blockade of Ca2+-dependent signaling mechanisms in populations of astrocytes that reside alongside CNS sympathetic control circuits prevents compensatory increases in sympathetic nerve activity, heart rate and arterial blood pressure induced by reductions in cerebral perfusion. These data suggest that astrocytes function as intracranial baroreceptors and play an important role in homeostatic control of arterial blood pressure and brain blood flow
    corecore