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Key Points 

Essential hypertension is associated with hyperactivity of the sympathetic nervous system 

and hypoperfusion of the brainstem area controlling arterial pressure. Sympathetic and 

parasympathetic innervation of vertebrobasilar arteries may regulate blood perfusion to the 

brainstem. Thus, we examined the autonomic innervation of these arteries in pre-

hypertensive and hypertensive spontaneously hypertensive rats relative to age-matched 

Wistar rats. Our main findings were: 

- An unexpected decrease in noradrenergic sympathetic innervation in PHSH and SH 

compared to Wistar rats despite elevated sympathetic drive in PHSH rats 

- A dramatic deficit in cholinergic and peptidergic parasympathetic innervation in 

PHSH and SH compared to Wistar rats 

- Denervation of sympathetic fibres did not alter vertebrobasilar artery morphology or 

arterial pressure 

Our results support a compromised vasodilatory capacity in PHSH and SH rat compared to 

Wistars, which may explain their hypo-perfused brainstem. 

 
Abstract 
 
Neurogenic hypertension may result from brainstem hypoperfusion. We previously found 

remodelling (decreased lumen, increased wall thickness) in vertebrobasilar arteries of 

juvenile, pre-hypertensive spontaneously hypertensive (PHSH) and adult spontaneously 

hypertensive (SH) rats compared to age-matched normotensive rats. We tested the 

hypothesis that there would be a greater density of sympathetic to parasympathetic 

innervation of vertebrobasilar arteries in SH versus Wistar rats irrespective of the stage of 

development and that sympathetic denervation (ablation of the superior cervical ganglia 

bilaterally) would reverse the remodelling and lower blood pressure.  

Contrary to our hypothesis, immunohistochemistry revealed a decrease in the innervation 

density of noradrenergic sympathetic fibres in adult SH rats (P<0.01) compared to Wistar 

rats. Unexpectedly, there was a 65% deficit in parasympathetic fibres, as assessed by both 

vesicular acetyl choline transporter (α-VAChT) and vasoactive intestinal peptide (α-VIP) 

immunofluorescence (P<0.002) in PHSH rats compared to age-matched Wistars. Although 

the neural activity of the internal cervical sympathetic branch, which innervates the 

vertebro-basilar arteries, was higher in PHSH relative to Wistar rats, its denervation had no 

effect on the vertebrobasilar artery morphology or persistent effect on arterial pressure in 

SH rats.   

Our neuroanatomic and functional data does not support a role for sympathetic nerves in 

remodelling of the vertebrobasilar artery wall in PHSH or SH rats. The remodelling of 

vertebrobasilar arteries, the elevated activity in the internal cervical sympathetic nerve 

coupled with their reduced parasympathetic innervation suggests a compromised 

vasodilatory capacity in PHSH and SH rats that could explain their brainstem hypoperfusion. 



 

 

Introduction 

We proposed previously that blood flow into the posterior cerebral circulation 

(vertebrobasilar arteries), which feeds the medulla oblongata and pons, is a contributing 

determinant of the set point of sympathetic activity and arterial pressure in both animals 

(Paton et al., 2009; Cates et al., 2011; Cates et al., 2012a; McBryde et al., 2017) and humans 

(Cates et al., 2012b; Warnert et al., 2016). A reduction in vertebrobasilar artery blood flow 

resulting from stenosis or remodelling/hypertrophy, can trigger a Cushing response 

(Cushing, 1901; Rodbard & Stone, 1955; Schmidt et al., 2005; Schmidt et al., 2018) resulting 

in neurogenically mediated hypertension. Moreover, in the spontaneously hypertensive (SH) 

rat the brainstem is hypoxic and when blood pressure is reduced to normal levels becomes 

severely hypoxic (Marina et al., 2015). A MRI study reports that human hypertension is 

associated with hypoperfusion of the brain (Muller et al., 2012) and neuroendoscopy data 

from humans has shown a clear temporal and quantitative relationship between a rise in 

intracranial pressure and a subsequent rise in arterial blood pressure to maintain cerebral 

perfusion within normal limits (Kalmar et al., 2005). These studies led us to the ‘selfish brain 

hypothesis’ of neurogenic hypertension in which a Cushing mechanism operates to preserve 

cerebral blood flow at the expense of systemic (essential) hypertension (Paton et al., 2009; 

Cates et al., 2012a). 

 
In support of the selfish brain hypothesis, we have shown that the vertebrobasilar arteries 

are both re-modelled, with thicker media and narrowed lumen, and have higher vascular 

resistance in pre-hypertensive spontaneously hypertensive (PHSH) rats compared to age-

matched normotensive control rats (Cates et al., 2011). In humans, we recently reported 

hypoplastic vertebrobasilar arteries in hypertensive patients including  those with white 

coat and borderline hypertension suggesting that the remodelling of vertebrobasilar arteries 

occurs before hypertension develops and most probably is congenital (Warnert et al., 2016); 

thus, the remodelling cannot be secondary to the high blood pressure per se. This is 

supported by the finding that hydralazine treatment of pre-natal and post-natal SH rats does 

not prevent renal artery wall thickening despite a normalization of blood pressure during 

treatment (Smeda et al., 1988). If these early developmental morphological changes are not 

caused by a high blood pressure stimulus, then what does cause the remodelling? 

 
Sympathetic activity, at least to thoracic viscera, is raised in the early post-natal period in 

the PHSH rat (Simms et al., 2009). However, it remains unknown whether the sympathetic 

innervation to the posterior cerebral vasculature is altered in the PHSH rat. Sympathectomy 

of small mesenteric arteries and resistance vessels has been shown to prevent hyperplastic 

changes in neonatal SHRs (Lee et al., 1987) and sympathetic innervation was found 

necessary to increase proliferation of arterial smooth muscle in the ear artery of rabbits 

(Bevan, 1975) but halted irreversibly when sympathetic nerves were denervated (Bevan & 

Tsuru, 1981). Treatment of PHSH rats with an angiotensin converting enzyme inhibitor 

reduced the hypertrophy of renal, splanchnic and cerebral arterial vascular beds (Ibayashi et 



 

 

al., 1986; Harrap et al., 1990; Harrap, 1991) and produced a life-long ameliorating effect on 

the development of hypertension (Ibayashi et al., 1986). Thus, the sympathetic nervous 

system, which can elevate angiotensin II activity, appears to contribute to arterial 

remodelling seen in SHR from early post-natal life. However, the role of the sympathetic 

nervous system in driving vascular changes within the vertebrobasilar arteries in the PHSH 

rat remains unknown.  

 
The aim of this study tested the hypotheses that: (i) there is an age-dependent increase in 

the density of the noradrenergic sympathetic innervation of the vertebrobasilar arteries in 

the developing SH rats relative to age-matched normotensive controls and (ii) reducing 

sympathetic innervation of vertebrobasilar arteries in the SH rat regresses their vascular 

remodelling.  Our findings are inconsistent with this hypothesis but support the notion that 

in PHSH and SH rats the vertebrobasilar circulation is compromised in a way that may limit 

vasodilatory capacity. 



 

 

Methods 
 
Ethical Approval 
Animal experiments were conducted in accordance with the UK Animals (Scientific 

Procedures) Act 1986 and associated guidelines under project licence PPL 30/3121 and were 

approved by the Local Ethical Committees on Animal Experimentation at the University of 

Bristol. The authors confirm that the animal care and experiments conform to the guidelines 

of The Journal of Physiology (Grundy, 2015). 

 

Subjects 
Spontaneously hypertensive and Wistar rats were obtained from Harlan, UK, or was bred 

from Harlan stock in the animal care facility at the University of Bristol. The animals were 

maintained in standard environmental conditions (23±2 °C; 12/12 h dark/light cycle) with 

water and chow ad libitum. 

 
Neural innervation of the vertebrobasilar arteries 
Experiments were performed on juvenile PHSH (4-5 weeks) and adult (12 weeks to 1+ year, 

to allow ageing data) male SH rats, and normotensive aged-matched Wistar rats. 22 PHSH and 

34 SH rats were compared to 60 Wistar rats (28 juveniles and 32 adults). 

 

Fixation, isolation and staining of nerves: Rats were euthanized with Euthatal (pentobarbital 

sodium 60 mg/kg i.p.) and upon loss of tail reflex perfused transcardially with 100 ml of 

phosphate buffered saline (PBS, Dulbecco A (Oxoid, ThermoScientific)) followed by 200-300 

ml of 4% paraformaldehyde (PFA, Sigma, UK) in 0.1M PB (from 0.5M stock: 13.68g NaH2PO4 

(MW: 137.99g/mol) and 56.86g Na2HPO4 (MW: 141.96g/mol) per litre ddH2O) pH adjusted 

to pH 7.3 using 0.8ml NaOH (10N) at a flowrate of 35ml/min. Post perfusion, 5-20ml of blue 

ink (QUINK, Parker) was injected through the heart to help visualise the posterior cerebral 

circulation prior to dissection of the meninges. All traces of the ink washed away in the 

subsequent staining procedures. The ventral meninges containing the vertebrobasilar 

arteries and vasculature of the Circle of Willis was peeled carefully off the brain and post-

fixed further in 4% PFA at 4°C overnight. Standard immunohistochemical (IHC) double 

labelling ensued on free floating meninges. Dopamine-β-hydroxylase (DBH) and Vesicular-

Acetyl-Choline-Transporter (VAChT) plus Vasoactive Intestinal Peptide (VIP) were used to 

differentiate between sympathetic and parasympathetic fibres, respectively. We 

acknowledge that these markers are not unique nor exclusive for these fibre types but they 

are presently the best immunological markers commonly used to identify autonomic nerves 

in the cerebrovascular system (Dauphin & Mackenzie, 1995; Edvinsson et al., 2001; 

Edvinsson & Krause, 2002). We also emphasise immunofluorescence will not necessarily 

label all fibres present.  α-DBH (Millipore) is specifically labelling noradrenergic fibres of the 

sympathetic system, whereas α-VAChT (Millipore) and α-VIP (Novus Biologicals) stain 

respectively the cholinergic and the non-cholinergic, peptidergic component of 

parasympathetic fibres. α-Neuronal-Nitric-Oxide-Synthase (nNOS, Santa Cruz) was also 



 

 

visualised having putative parasympathetic and/or sensory roles. Sensory effector nerves 

were identified using α-Calcitonine Gene Related Peptide (α-CGRP, Millipore). Double 

staining was performed in 4 combinations: 1) DBH & VAChT, 2) VIP & VAChT, 3) nNOS & 

VAChT and 4) nNOS & CGRP. The first marker in each of the combinations above was 

visualised using secondary antibodies conjugated to Alexa Fluor-594 (red fluorophore) 

whereas the second marker was conjugated to Alexa Fluor-488 (green fluorophore), see 

table 1 for details of all antibodies employed. All AF-antibodies were sourced from 

Invitrogen/Molecular Probes. The only exception was the Goat-anti guinea pig Ab used for 

secondary labelling of VAChT (Jackson IR or AbCam). Prior to imaging the sections were 

mounted, dried and cover slipped with Vectashield (Vector Labs). 

 

Fluorescence microscopy, fibre density measurements and % overlap analysis:  

For quantitative assessment of fibre densities, images were sampled with a 20x objective 

using a Leica DM5000 light microscope fitted with a Leica DFC300FX digital camera and Leica 

Acquisition Software (LAS). Imaging was performed to capture as large an area in 

focus/most fibres visible as possible. We positioned three regions of interest (ROI) windows 

on the in-focused areas. Focus was set on the channel (red or green) with the brightest 

fluorescent labelling. Images of both fluorophores were captured at the same focus. It was 

our experience that the majority of fibres in the adventitia got captured with the light 

microscope if the area was flat without folds or on the edge of the artery as this curved 

away and, hence, these areas were avoided. Three regions along the vertebrobasilar arteries 

were imaged for analysis (Fig 1): 1) Vertebral arteries (VA) caudal to the vertebrobasilar 

artery junction; 2) The posterior aspect of the basilar artery (BAp) just rostral to the 

vertebrobasilar junction; 3) The anterior aspect of the basilar artery (BAa) caudal to the 

junction with superior cerebellar arteries. Fibre densities were counted manually for each 

region by placing the aforementioned three ROIs covering 0.15 x 0.15mm semi-randomly on 

representative areas of the arteries that were in focus. Manual counting was chosen over 

automatic image analysis, as ridge detection used by Fiji for fibre detection cannot account 

for multiple fibres in bundles and does not allow detection of VAChT fibres due to their 

punctate appearance. All analyses were performed using these criteria and by the same 

skilled operator. Fibre densities were calculated as the mean number of fibres/mm2 ±SEMs 

in each region at a single focal depth. As the main focus of this paper has been to reveal 

changes in the autonomic innervation of vertebrobasilar arteries in the SHR compared to 

the Wistar, the figures focus on the inter-strain difference, and are displayed according to 

age. However, age- related differences with-in each strain were also examined and are 

described. The densities for the individual areas for each strain and age are displayed in 

Figures 2, 5, 7, 9 and 11. For clarity, the average across the 3 areas is reported in Results and 

only pronounced variations from the mean will be further described in the text.  The 

experimenter was ‘blind’ to the animal strain and age at the time of counting. The image 

quality of the figures has been enhanced for publication using standard Fiji manipulations 

(background subtraction, brightness and contrast). 



 

 

Three different patterns of DBH innervation could broadly be distinguished from the images 

used for the analysis in Figure 2: ’Net-like’, ‘intermediate’ and ‘brick-like’ (see Fig 3 for 

examples). These qualitative differences in innervation patterns were noted according to 

their location on the vessel and their distribution between rat strains of the two age groups 

assessed. Note, though ‘net-like’ fibres tended to have the lowest fibre densities and ‘brick-

like’ the highest, images with equal densities could be categorised to two different patterns, 

(overlap was especially common between the ‘intermediate’ and the ‘brick-like’).  

For qualitative descriptions, judgement of co-localisation and for illustration purposes some 

images were acquired on a spectral confocal microscope (SP5-II confocal laser scanning 

microscope attached to a Leica DMI 6000 inverted epifluorescence microscope). Images 

were sampled as z stacks equivalent to the total depth of one arterial wall. 

 

To support the argument that reduced vasodilatory capacity is present in SHR compared to 

Wistar (Chang et al., 2012) rats we compared the % of juxtapositioned DBH and VAChT 

fibres along the total length of DBH fibres; this is, referred to as “% overlap analysis”.  It was 

beyond study limitations to repeat such analysis for other fibre type combinations. The % 

overlap analysis was performed with the aid of the “Modular Image Analysis (MIA) ” Fiji 

plugin (Schindelin et al., 2012; Rueden et al., 2017; Cross, 2018) developed by Stephen Cross 

(Wolfson Imaging Facility, University of Bristol). The plugin, semi-automates detection, 

length calculation and overlap of DBH and VAChT fibres within a user-defined ’proximity 

zone’ of the DBH fibres (for summary of workflow see Fig. 1C). DBH fibre detection was 

automated using the “Ridge Detection” Fiji plugin (Steger, 1998; Wagner, 2017), while the 

punctate labelling of VAChT fibres necessitated manual selection.  Analysis was confined to 

a hand-drawn region of interest, with fibres outside this region being discarded. Ridge 

detection can be tuned for optimal signal to noise detection using 3 parameters: upper 

threshold, Sigma and minimum length of fibre. The settings employed by these analyses 

were, respectively, 0.3-0.5 µm (adjusted according to image quality); 4.0 and 20 µm. 

Another variable parameter controlling the width of the DBH fibre radius (i.e. ‘the proximity 

zone’) was iterations in pixels; we employed 1 µm either side of the ridge detected. Hence 

the ‘proximity zone’ around the DBH fibres was approximately 2 µm across. Results are 

output to a spreadsheet and an image; example shown in Fig. 1D. The % overlap was 

calculated as the length of overlay divided by the total length of DBH fibres and expressed 

as a percentage. 

 

Quantifying sympathetic activity in the multiple sympathetic outflows in situ 

Experiments were performed in male PHSH and age matched Wistar rats (n=8 each) using 

the working heart-brainstem preparation as described previously (Paton, 1996). Briefly, 

animals were deeply anaesthetized with isoflurane, transected caudal to the diaphragm, 

exsanguinated and submerged in a cooled Ringer solution (composition in mM): NaCl, 125; 

NaHCO3, 24; KCl, 3; CaCl2, 2.5; MgSO4, 1.25; KH2PO4, 1.25; dextrose, 10. They were 

decerebrated at the precollicular level rendering them insentient. Preparations were 



 

 

transferred to a recording chamber and the descending aorta cannulated and perfused 

retrogradely with Ringer’s solution containing an oncotic agent (1.25% Polyethylene glycol, 

Sigma, St Louis, MO, USA), neuromuscular blocker (vecuronium bromide, 3–4 μg/ml) and 

continuously gassed with 5% CO2 and 95% O2 using a peristaltic pump (Watson-Marlow 

502s, Falmouth, Cornwall, UK). The perfusate was warmed to 31°C, filtered using a nylon 

mesh (pore size: 25 μm, Millipore, Billirica, MA, USA) and recycled. 

 

Respiratory and sympathetic motor nerves were isolated and recorded using bipolar glass 

suction electrodes. Phrenic nerve activity (PN) was recorded from its central end intra-

thoracically and the internal (iCSN) and external (eCSN) branches of the cervical and lumbar 

(lSN) post-ganglionic sympathetic nerves isolated and recorded. Signals were amplified, band-

pass filtered (AM-Systems, WA; USA; 0.1–5 kHz) and acquired with an A/D converter (CED 

1401, Cambridge Electronic Design, CED, Cambridge, UK) to a computer using Spike 2 

software (Cambridge Electronic Design, CED, Cambridge, UK). All nerve recording analysis was 

performed off-line on rectified and smoothed (50 ms) signals using Spike 2 software with 

custom-written scripts. The patterns of respiratory and sympathetic activities were analysed 

using phrenic-triggered averages of iCSN and eCSN (generated from 1-2 min epochs of 

recording), which were divided into three parts: inspiration (coincident with inspiratory PN 

discharge), post-inspiration (post-I; first half of expiratory phase and second half of expiration 

(E2). The peak activity of each nerve was set to 100% and the activities observed during the 

different phases of respiratory cycle were the average values obtained, normalized by the 

peak of activity. The noise level, which was considered as 0%, was determined 10–20 min 

after ceasing arterial perfusion at the end of each experiment and subtracted.  

 

In vivo superior cervical ganglionectomy and measuring basilar artery innervation and 

morphology  

A total of 41 male SH rats (12-13 weeks old, Harlan, UK) were employed. Anaesthesia was 

induced using isoflurane and maintained using a mix of 0.5ml Ketamine (Vetalar®, 

100mg/ml), 0.3 ml Medetomidine (Dormitor®, 1mg/ml) and 0.2ml Saline injected in a 

volume of 0.05ml/100g (i.m.). Animal temperature was monitored via a rectal probe and 

maintained on a thermostatically controlled heat pad. Animals were assigned to either 

septic bilateral superior cervical ganglia resection (SCGx) or sham surgery (SCGsham, as 

SCGx but leaving SCGs intact) as described by Savastano et al. (2010). The surgical wound 

was closed with wound clips. Animals were reversed from anaesthesia by subcutaneous 

injection of atipamezole (Antisedan® 5mg/ml, administered as 0.05mg/300g rat). 

Postoperative analgesia included administration of Meloxicam (Metacam 5mg/ml, given as 

0.3 mg/kg for the first 48 hours, s.c.). Procedural success of SCGx was indicated by bilateral 

eyelid ptosis which persisted until the end of the study. 

 

Animals were kept for fourteen days prior tissue collection. The animals were deeply 

anaesthetised (pentobarbital 200 mg/kg) and decapitated at C2. The brain was then gently 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwj74f2Wp53WAhXKhRoKHf4UBGAQFggmMAA&url=http%3A%2F%2Fwww.petplace.com%2Farticle%2Fdrug-library%2Flibrary%2Fprescription%2Fmedetomidine-domitor&usg=AFQjCNEURyIcZphyJ9QsdNV30NdpMYBt7g


 

 

removed and post fixed for 48 hrs in 10% paraformaldehyde as described previously (Cates 

et al., 2011).  

Subsequently, and in some animals, the medulla oblongata was isolated and embedded into 

wax for sectioning (10 µm thick coronal sections). Sections were collected from the point of 

vertebral artery convergence (posterior basilar artery) and at 100 µm intervals to its rostral 

end. After de-waxing, sections were stained with haematoxylin and eosin.  

In other animals, the entire vertebrobasilar arteries were peeled away from the brain and 

underwent immunocytochemical staining for α-DBH and α-VAChT as previously described. 

Arteries stained with fluorescent probes were imaged on a Leica SP5 confocal microscope 

with a 20x/0.7 oil/glycerol immersion lens. Images were collected as z-stacks in a depth 

containing a complete layer of the adventitia. Fibre densities for the basilar and each 

vertebral artery were determined using the method previously described and the data 

expressed as percentage reduction from sham operated animals.  

 

Coronal sections were imaged under a microscope (Zeiss Axioskop2) to make lumen- and 

vessel diameter and wall thickness assessments. We controlled for distortion of the artery 

profile by measuring the circumferences (external and lumen) in the image analysis program 

Fiji using the poly-selection tool, which measures the circumference of the vessel 

(regardless of shape) based on the perimeter (P) using the equation: P = 2πr. From this the 

wall thickness was computed according to Furuyama (1962) and Nordborg et al. (1985). 

In vivo blood pressure measurement 

A blood pressure sensing device (DSI PA-C40) was implanted 10 days prior to SCGx/sham 

surgery. Using similar anaesthetic procedures to those described above, a midline abdominal 

incision allowed access to the descending aorta at a level rostral to the aortic bifurcation into 

iliac arteries. During temporary occlusion of blood flow, the aorta was punctured with an 18G 

needle and the transmitter catheter inserted and advanced towards the heart with its tip 

caudal to the renal arteries. The catheter was secured with surgical glue (3M Vetbond®) and 

a cellulose patch and the transmitter was sutured to the abdominal muscle. The wound was 

closed and repaired with sutures. Analgesia was provided as above. 

 

Statistical analysis 

All statistical analyses were performed using Graph Pad Prism versions 6 or 7. For the fibre 

density study and % overlap assessment, 2way-RM-ANOVAs were used to assess the effect 

of strain or age across the 3 regions in strain x region or age x region comparisons (reported 

in text as F- and P-values) followed by post-hoc Sidak’s multiple comparison tests (P-values 

only). The outcomes of the Post-Hoc strain and age comparisons are indicated with star- (*) 

or cross marks (†, adult panel) for each region on the figures for the strain and age 

comparisons, respectively. Regional differences were sometimes explored with 1way-RM-

ANOVAs followed by Tukey’s multiple comparison tests. Noradrenergic sympathetic 

innervation change by age was examined with linear regression, testing slope difference 



 

 

from zero and difference in slopes between strains. For changes in the sympathetic activity, 

data were expressed as mean ± SEM and compared using Student's unpaired t-test. Blood 

pressure differences between SCGx and Sham were examined using 2way-ANOVA with post-

hoc Sidak’s multiple comparison tests. Statistics for %-change (from Sham) in innervation 

density following xSCG was performed as t-tests for each region. All differences were 

considered significant when P < 0.05. 

 
 
Results 

 

DBH immunofluorescent innervation of vertebrobasilar arteries in Wistar and SH rats 

Fibre densities reported herein reflect the mean across the three regions measured (VA, 

BAp, BAa). There was no evidence of increased noradrenergic sympathetic fibre density in 

either rat strain at both age points in all regions studied (VA, BAp and BAa, Fig. 2). Intra-

strain comparisons (post hoc outcomes indicated by dagger symbols in Fig. 2) revealed that 

Wistar rats displayed no significant difference in noradrenergic sympathetic fibre density 

with respect to age (647±47 vs 591±39 fibres/mm2 in juveniles and adults, respectively), but 

did with respect to region (F2,28=10.4; P=0.0004) with the highest fibre densities observed in 

BAp and the lowest in BAa at both ages. The average DBH fibre density in juvenile PHSH rats 

was 563±32 fibres/mm2; this was reduced by 33% in the adult SH rat to 380±26 fibres/mm2 

(F1,14=9.46; P=0.008) and was significant at the BAa (P<0.01); DBH innervation density to VA 

and BAp were comparable across ages.  

 

Comparing the two juvenile rat strains (Fig. 2, top left), DBH fibre density in the PHSH rat 

was reduced between 19-26% at posteriorly (VA and BAp) and increased 15% in BAa 

compared to aged matched normotensive rats resulting in a significant interaction 

(F2,28=4.82; P=0.016) and effect of position (F2,28=9.322; P=0.0008) but no significant effect 

of strain. In the adult rats the differences in DBH fibre densities are even greater. Reductions 

in SH rats range from 33-41% across regions; Fig. 2, top middle) compared to Wistars, 

resulting in significant effects of both strain (F1,14=14.22, P=0.008) and position (F2,28=6.33, 

P=0.005); post hoc analysis found the strain differences were confined to the posterior 

regions: VA (P<0.01) and BAp (P<0.05), but not in BAa.  

Sympathetic fibre densities plotted as a function of age for Wistars and PHSHR/SHRs 

indicated a progressive deterioration in DBH immuno-positive fibres with age in SHRs only 

(p<0.05 in VA and BAp & p<0.001 in BAa). Over the ~450 days examined, we saw a trend 

towards a significant difference in slope between Wistars and SHRs for VA (p=0.08) and BAa 

(p=0.06) but not BAp (p=0.4), data not illustrated. 

Innervation patterns by DBH immunofluorescent fibres 



 

 

Three distinguishable patterns of DBH innervation were found (Fig. 3). Their occurrence with 

respect to location is illustrated in Fig. 4 and described qualitatively here. Please note that 

these patterns were consistent across all animals. 

1). “Net-like” pattern of fibres running mostly longitudinally or diagonally with the artery 

was predominantly found on BAa and is generally more prevalent in adults than juveniles.  

2). ‘Intermediate’ pattern of innervation – mixture of radially and longitudinally running 

fibres. This pattern of innervation was predominant in BAp, high in VA and typically 

occurred more in juveniles than adults of both strains. 

3). “Brick-like”pattern of fibres, with the majority running radially around arteries, 

perpendicular to direction of blood flow. This form of innervation was only found in VA and 

BAp, and was more common in juveniles of both strains. Similar in description to Cohen et 

al. (1992). 

 

‘Parasympathetic’ innervation of vertebrobasilar arteries in Wistar and SH rats 

Putative parasympathetic fibres were of smaller fibre diameter compared to DBH 

immunofluorescent fibres making their visualisation more technically challenging. Because 

of their multiple neurochemical phenotypes, three approaches were used to assess 

parasympathetic fibre densities: VAChT (Fig. 5), VIP (Fig. 7) and nNOS (Fig. 9). Note that 

nNOS is also found in sensory afferent fibres, so co-staining with VAChT or CGRP was 

performed to identify either cholinergic parasympathetic or sensory components of nNOS 

axons (Fig. 7) with the caveat that there may be sensory fibres that do not contain CGRP.  

 

(i) VAChT positive innervation: The majority of VAChT-fibres run in close apposition with 

DBH fibres as illustrated by confocal microscopy (Fig. 6).  In Wistar rats, VAChT fibre density 

(Fig. 5) was approximately half of that measured for DBH axons. VAChT fibre density 

increased dramatically (73%) from juveniles (227±18 fibres/mm2) to adult Wistar rats 

(392±22 fibres/mm2; F1,40=15.02; P=0.0004). Innervation density increased in all arterial 

regions with the biggest increase in VA and Bap (both significant at p<0.01, see Fig 5). As 

with the DBH staining, the highest VAChT fibre densities were in BAp and the lowest in BAa 

(overall effect of region: F2,80=8.78; P=0.0004).  

PHSH rats had a VAChT fibre density of 105±11 fibres/mm2 reflecting a 54% reduction 

compared to aged-matched Wistars (F1,40=16.83; P=0.0002, Fig 5), which was exacerbated in 

adulthood (-67%; F1,43=52.94; P<0.0001, Fig 5). Unlike Wistar rats, there was no change in 

VAChT fibre density with age in hypertensive rats (PHSH, 105±11 vs SHR 129±13 fibres/mm2) 

and no differences in innervation density according to region.  

 
(ii) VIP positive innervation: VIP-labelling (Fig. 7) closely mirrored VAChT innervation (Fig. 5). 

Overlap between VAChT and VIP markers was sparse suggesting separate fibre populations 

(Fig 8).  

In Wistar rats, VIP fibre density increased by 66% during development (juvenile: 246±18 vs 

adult: 409±26 fibres/mm2, F1,18=17.39; p=0.0006) reaching significance in VA and BAa 



 

 

regions (Ps<0.01). In contrast, there was a prominent deficit of VIP labelling in hypertensive 

rats and this did not change with age (PHSH 119±24 vs SH: 114±17 fibres/mm2).  

VIP labelling was 51% lower in PHSH rats than in age matched Wistars (F1,16=14.6; P=0.0015) 

and was specific to VA and BAp regions only (P<0.01). In adult SH rats, all vertebrobasilar 

artery regions had lower VIP fibre density compared to age matched Wistars (72%, 

F1,13=36.14; P<0.0001). The regional differences in innervation observed with DBH and 

VAChT were not evident with VIP staining. 

 

(iii) nNOS positive innervation: To determine whether nNOS immunopositive fibres were 

also cholinergic, double staining with VAChT was performed. Although hampered by the fact 

that the two markers could occupy different segments of the fibres, co-staining and confocal 

imaging revealed that the majority of VAChT positive fibres were co-immunopositive for 

nNOS (Fig. 10). However, many more nNOS positive fibres without VAChT fibres were also 

found.  

 

The nNOS fibre density (Fig. 9) for juvenile Wistars average 418±39 fibres/mm2 with lower 

densities more posteriorly (VA: 271±42 fibres/mm2) and higher densities anteriorly (BAa: 

520±75 fibres/mm2). A 1w-RM-ANOVA (F=6.7, p<0.05) found VA to be significantly lower 

than BAp (p<0.05) and trending to be different for BAa (p=0.06). In PSHRs a similar 

distribution pattern with a lower (18%) mean density was found (average 343±69 

fibres/mm2) relative to age-matched Wistar rats. 1w-RM-ANOVA (f=9.5; p<0.01) with VA 

smaller than both BAp and BAa (p<0.05 and 0.01 respectively).  

There was no difference between the juvenile rat strains, but the difference in fibre 

densities at the different locations leads to a significant effect of region (F2,28=15.8, 

P<0.0001). In the adult rats, fibre densities are higher and even across all regions relative to 

their respective juvenile counterparts and it is also similar between rat strains (mean 

densities: Wistar rats: 597±31 and SHRs 615±30 fibres/mm2, NS). The increased fibre density 

with age is significant for both Wistar (F1,22=6.7; P=0.02) and SH rats (F1,22=9.3; P=0.006) and 

is significant for VA (P<0.01) in Wistars and both VA (p<0.0001) and BAp (p<0.05) in SH rats. 

 

(iv) CGRP: Labelling with the sensory marker CGRP revealed a small and equivalent 

distribution of sensory fibres in the vertebrobasilar arteries of adult Wistars and SH rats. 

Hence there was no evidence for a compensational sprouting of nNOS fibres from sensory 

fibres in SH rats. 

 

% overlap – VAChT to DBH juxtaposition  

In juvenile Wistars approximately 40% of DBH fibres are juxtapositioned with VAChT (Fig 

6B). In PHSH rats this proportion is halved (20%). This was consistent across all three regions 

studied. There was a significant effect of strain (F1,14=12.3; P=0.004), but no effect of region.  

The greatest difference in overlap was on VA (p<0.01), but also BAp and BAa were 

significant (p<0.05). An almost identical picture is present for adult rats showing an effect of 



 

 

strain (F1,13=10.4; P=0.007), but no effect of region. In the post hoc tests only BAp and BAa 

reached significance (Ps<0.05). Comparisons between different ages for each strain revealed 

no significant differences for both age and region. 

 

Activity level and pattern recorded from cervical sympathetic branches in situ 

We next compared the activity of the internal cervical sympathetic branch (iCSN) known to 

innervate the basilar artery (Sato et al., 1980; Arbab et al., 1986; Arbab et al., 1988; Hesp et 

al., 2012) between rat strains. In addition, we compared this activity to both the external 

cervical sympathetic branch (eCSN; which does not innervate cerebral vessels) and the 

lumbar chain (lSN). As before (Simms et al., 2009), we analysed differences in their 

respiratory modulation by averaging the percentage of integrated sympathetic activity 

during the respiratory phases of inspiration, post-I and E2. Similar to our findings with 

thoracic sympathetic activity (Simms et al., 2009), the lSN activity peaked during post-I. In 

both rat strains, iCSN and eCSN had a higher inspiratory (Wistar: p<0.05; PHSH: p<0.05) and 

lower post-I modulated sympathetic discharge (Wistar: p<0.05; n=8; PHSH: p<0.05; n=8) 

than lSN (Fig. 12). Comparisons between rat strains indicated that PHSH rats showed a 

higher peak of sympathetic activity during inspiration in both iCSN (PHSH vs Wistar rats: 22 ± 

3.1 vs 11 ± 1 µV; n=8, p=0.0015) and eCSN outflows (PHSH vs. Wistar rats: 17 ± 2.1 vs 9.7 ± 

2.5 µV; n=8, p=0.03), and during post-I in lSN (PHSH vs. Wistar: 24 ± 2 vs 8.6 ± 0.9 µV; n=8, 

p<0.0001; Fig. 12). Moreover, in PHSH rats, an additional burst of activity during pre-

inspiration was also seen in the iCSN but never in eCSN or lSN outflows (Fig. 12). Thus, in 

hypertensive rats, the iCSN has both higher activity and a unique pattern compared to other 

sympathetic outflows and to the same outflow in normotensive rats.  

 

Superior cervical ganglionectomy (SCGx) and vertebrobasilar artery remodelling 

The SCG was verified using TH immunofluroscence staining (Fig. 13A). Although there was no 

increase in the sympathetic innervation density of the vertebrobasilar arteries in hypertensive 

versus normotensive rats, the elevated activity levels in the internal cervical sympathetic 

branch in PHSH rats, which contain much of the innervation to these cerebral arteries, could 

contribute to their remodelling. Thus, we performed bilateral SCGx to reduce the bulk of the 

innervation of the vertebrobasilar arteries in adult rats. Allowing for three days recovery from 

surgery, there was no difference in food or water intake, and no persistent reduction in 

systolic or diastolic blood pressure (Fig. 13B), heart rate or ventilatory frequency between 

SCGx and SCGsham rats up to the 14 post-operative day, when animals were culled (not all 

data shown). There was a significant reduction in DBH immunostaining in SCGx SH rats 

compared to the SCGsham group (Fig. 14A). The highest reduction happened posteriorly: 62% 

for the VA (P<0.01) and 57% (P<0.001) on the BAp, whereas a reduction of 38% was seen on 

the BAa (P<0.01), Fig. 14B. There was no significant difference in VAChT immunopositive 

fibres on any parts of the vertebrobasilar arteries between SCGx and SCG sham groups, Fig. 

14B.  The diameters of the BAa, BAp and VA left and right were 247 ± 5, 230 ± 4 µm, 224 ± 8 

and 238 ± 7 µm, respectively. However, there was no difference in the lumen diameter, wall 



 

 

thickness and lumen diameter:wall thickness ratio between SCGsham and SCGx SH rats (Fig. 

14C). 

 

Discussion 

The present study examined the differences in the autonomic innervation of the posterior 

cerebral arteries of juvenile and adult normotensive and hypertensive rats and whether the 

noradrenergic sympathetic innervation was responsible for the remodelling that lead to our 

previously observed increases in cerebrovascular resistance in the SH rats. Contrary to our 

hypothesis, we did not find any evidence for an increase in noradrenergic sympathetic 

innervation density in the vertebrobasilar arteries in SH rats compared to age matched 

Wistars. However, our data demonstrate for the first time that there are substantial 

reductions in fibres with presumed parasympathetic function in hypertensive rats that may 

reduce their capacity for vasodilatation. Our data also purport that the sympathetic 

innervation from the superior cervical ganglion plays no part in the remodelling of the 

vertebrobasilar arteries or their parasympathetic innervation in the SH rats. 

 

Limitations and assumptions:  

Fibre counts were performed manually, and absolute numbers may be questionable as it 

was not always possible to clearly distinguish exact fibre numbers when bundles were 

encountered. However, we remain confident that the relative changes we report (rat strain, 

age, artery region) remain robust. Our fibre counts were based on images analysed using 

light microscopy over three areas within each segment of the vertebrobasilar artery 

measured, which provides a snap shot at a single focal depth. Given the size of the axons we 

believe this is reasonable but acknowledge that confocal imaging may improve fibre 

resolution and hence accuracy of the absolute densities of fibre types especially those with 

small diameters and weaker labelling (e.g. VAChT and CGRP containing fibres may have 

been missed as their labelling lay on the limit of what was detectable with light microscopic 

resolution). None of these limitations, however, affect the qualitative traits of our data, as 

all errors were similar across groups.  

Identifying autonomic fibres is confounded by their various guises. It is possible that the 

sympathetic fibre population could have been expanded using other established markers 

such as NPY (however, with the caveat that this marker may also be found in the 

parasympathetic system). Equally, there is not a single antibody that will, unequivocally, 

stain all parasympathetic fibres. Because of the overlap in phenotypes within 

parasympathetic fibres, using a combination of distinct markers does not allow one to sum 

the total number of fibres. Further, nNOS is present in sensory as well as autonomic fibres. 

Thus, the present study does not claim to provide an unequivocal fibre density for each 

population of autonomic nerves innervating the vertebrobasilar arteries, but rather the 

subgroups of fibres identifiable using conventional immunocytochemical markers. However, 

using multiple probes targeting the different types of parasympathetic nerves provides 



 

 

more information than a single marker and highlights the different ‘subpopulations’ of this 

innervation, which may participate differentially in regulating blood flow.  

Equally, the semi-automated workflow employing Fiji (minimising any bias involved in 

manual counting) comes with certain caveats.  DBH fibres are automatically selected by 

ridge detection. VAChT fibres had to be operator traced. However, the tracing of green 

fibres was done ‘blind’ as the the operator was unaware of the position of the DBH fibres. 

We argue that any imprecision in tracing by the operator should be equal across all groups. 

If multiple strands ran in parallel they were all traced. Hence there is a tendency in this 

analysis to underestimate DBH fibres as : 1) only one length was counted in bundles 

containing multiple fibres; 2) the full width of very wide bundles were not accounted for by 

the 2µm width setting and 3) Some fibres were not picked out as a result of sensitivity 

settings, i.e. an inability of the programme to distinguish noise from signal. Equally there is a 

tendency to proportionally overestimate VAChT fibers: 1) Multiple fibers in bundles were 

traced to ensure full cover of the foot print and 2) any sign of fibres, even very weak ones 

not containing strong punctate fluorescence, were traced (these are particularly present in 

SHRs). Hence these caveats would work against the observed differences between SHRs and 

Wistar rats. Thus, we are confident that any improvement to the analysis would only serve 

to make the differences found between the two rat strains even bigger. 

 

 

Sympathetic innervation of vertebrobasilar arteries in hypertension 

We found no difference in the noradrenergic sympathetic innervation of vertebrobasilar 

arteries between rat strains in the juvenile age group, but an age-dependent reduction in 

adult SHRs, particularly in the posterior regions (VA & BAp). For the juvenile age group our 

results contrast to Dhítal et al. (1988), who using the glycoxylic acid staining method found 

significant increases in sympathetic innervation of basilar arteries in PHSH relative to Wistar 

rats at ages of 4, 6 and 8 weeks, but not at 12 weeks old. Unfortunately, animals >12 weeks 

old were not examined by this research group, so any age-related decline in sympathetic 

innervation, as we found, could not be known. Age-dependent decreases in sympathetic 

innervation have been described previously for normotensive Wistar rats: peak innervation 

on the BA was obtained at 1-4 months with a 10% decrease at 8 months and 50% at 27 

months (Mione et al., 1988).  

 

Previous studies did not utilise α-DBH- fibre counts but made comparisons between adult 

SH and WKY rats using glyoxylic catecholamine fluorescence or noradrenaline content of 

arteries that included the basilar and reported increased sympathetic innervation of 

cerebral arteries of SHR (Lee & Saito, 1984; Mangiarua & Lee, 1990); this was thought to act 

functionally to restrict these arteries thereby controlling blood flow and preventing stroke. 

This increased innervation is in stark contrast to our data, where we found a reduction in 

DBH-stained fibres in adult (i.e. >12 week old) SHR versus Wistar rats. This warrants further 

discussion. We note that Lee and Saito (1984) reported sparse catecholaminergic 



 

 

innervation of the BA-VA junction in adult WKY rats. Our data from Wistar rats (both ages) 

exhibited dense immuno-positive DBH staining of vertebrobasilar arteries. This raises the 

question of an inter-strain difference (WKY vs Wistar; see (Rapp, 1987; Kurtz et al., 1989; St 

Lezin et al., 1992) which could explain the discrepancy with our data, as clearly they would 

be comparing from a very low level of innervation in WKY relative to SHR. We cannot rule 

out genetic variation between the SHR rats used herein with these previous studies (see 

Okuda et al. (2002)). Differences in the methods used to visualise sympathetic fibres may 

also play a role. Indirect immunofluorescence appears to stain a larger proportion of nerve 

fibres compared to DBH-immunofluorescence (Schröder & Vollrath, 1985) which would 

affect comparisons with the data from Lee and Saito (1984) and Mangiarua and Lee (1990). 

Given our data of differences in innervation (fibre density and pattern) rostro-caudally along 

the basilar-vertebral arteries and lack of regional specificity in previous studies, not to 

mention different techniques used, makes direct comparison of these data with other 

studies challenging. 

Our results also revealed regional differences in the noradrenergic sympathetic innervation 

from VA, BAp to BAa. These differences were both quantitatively (as fibre densities) and 

qualitatively different (as in the way the fibres were arranged). Changes in pattern appeared 

to be more prominent across age than strain and biggest in the VA. Similar patterns of 

innervation  across both anterior (Circle of Willis) and posterior cerebral arteries  has 

previously been described by Cohen et al. (1992), but only in adult rats and no  regional 

differences were reported in the posterior cerebral arteries. At present we have no 

explanation for the functional significance of the observed differences in regional patterns 

but speculate they may be related to the need for precise regulation of blood flow to the 

brainstem. 

 

Sympathetic nerve activity to vertebrobasilar arteries 

The functional significance of any nervous innervation is difficult to interpret without 

knowing the activity levels within the fibres. Thus, we recorded the internal branch of the 

cervical sympathetic nerve from PHSH and age-matched Wistar rats (we were unable to 

record this in adult rats free of anaesthesia) which is known to innervate the anterior basilar 

artery (Arbab et al., 1986; Arbab et al., 1988) and, based on our superior cervical ganglion 

denervation data, provides some of the innervation to the posterior basilar artery and the 

vertebral arteries (Fig 13). Sympathetic activity was respiratory-modulated, and all 

respiratory phases of this modulation were higher in the PHSH rat relative to age-matched 

Wistar rats. In PHSH rats, we found a novel activity signature from iCSN - a discharge 

coincident with the pre-inspiratory phase; the significance of this remains to be determined 

but it further boosts the overall hyperexcitability of this innervation. This hyperactivity was 

present in the PHSH rat before both the onset of hypertension and the deficit in 

sympathetic innervation; whether it persists in adulthood is unknown but based on other 

sympathetic outflows recorded previously from SHR (Menuet et al., 2017), we would predict 

it would. One possibility is that this excessive sympathetic activity leads to the demise of the 



 

 

DBH immuno-positive innervation as has been found to occur to noradrenergic nerves 

innervating cardiac tissue in heart failure (Igawa et al., 2000), a condition where 

sympathetic activity is also raised; this may be a compensatory mechanism preventing 

noradrenaline induced hyperplasia of the vertebrobasilar arteries as can occur in the aorta 

(Dao et al., 2001).  

 

Vasodilatory role of the sympathetic innervation to vertebrobasilar arteries 

It has been argued that in the rat the sympathetic nerves in the basilar artery are not 

involved in vasoconstriction but vasodilatation (Chang et al., 2012); the latter artery is 

known to be less sensitive to noradrenaline than non-cerebral arteries (Lee, 2002).  

Curiously, sympathetic activation in normotensive rats dilated the basilar artery by 

stimulation of β2 adrenergic receptors; the latter were proposed to be located on nitrergic 

nerves thereby triggering NO release (Chang et al., 2012). Based on our observation of 

decreased sympathetic innervation of the basilar artery in the adult SHR, this may 

compromise the vasodilatatory capacity of the sympathetic nerves, which was indeed found 

by (Chang et al., 2012). Certainly,  the confocal imaging shows that sympathetic nerves run 

in close proximity to parasympathetic fibres providing the anatomical substrate for crosstalk 

between sympathetic and parasympathetic fibres and the vasodilatory mechanism as 

reported by Chang et al. (2012).  A reduced vasodilatory capacity of the sympathetic control 

of the basilar artery in the adult SHR is further supported by our finding of a reduced 

cholinergic and peptidergic parasympathetic innervation versus aged matched Wistar rats. 

Parasympathetic markers for both cholinergic (VAChT) and peptidergic (VIP) fibres revealed 

a striking deficit in fibre densities in the PHSH rat. This was suggested in an earlier electron 

microscopy study but conventional confirmation of parasympathetic nerves using 

established immuno markers was not made (Lee & Saito, 1984). Further, analysis of the 

percentage of DBH fibres that were juxtapositioned with VAChT (%overlap analysis) 

demonstrated a 50% reduction in overlap between SHR versus Wistar rats in both age 

groups, which was independent of the position along the artery. We accept that an analysis 

of the co-positioning between DBH to peptidergic and nitregic parasympathetic fibres would 

have allowed a more substantiated statement on the limitation of vasodilatory capacity in 

the SHR but this awaits a future study.  

 

Parasympathetic innervation and vasodilatory role 

Although the fibre densities obtained for VIP and VAChT are almost identical, our confocal 

imaging revealed that in the majority of cases they are not co-expressed in the same fibres 

and is consistent with previous observations (Yu et al., 1998) and differences in their origins 

(Suzuki et al., 1988). If they are indeed separate fibres, then based on our data (see Fig 

5&7), the total parasympathetic innervation density of VIP+VAChT in normotensive animals 

is comparable with the sympathetic innervation density (Fig 2). However, although 

acetylcholine is a major vasodilator in many peripheral arteries, it does not appear to have 

major vasodilatory function in the rat basilar artery, but has a modulatory role on NO 



 

 

release from nitrergic nerves, as Chang et al. (2012) discussed above. However, VIP induces 

vasodilation via NO mechanisms involving: (i) endothelial cells (Gaw et al., 1991; Gonzalez et 

al., 1997), (ii) nitrergic nerves (Seebeck et al., 2002) and (iii) a direct action on SMCs (Grant 

et al., 2005). Hence, we propose that the deficit in VIP innervation we found in SHR would 

reduce vertebrobasilar artery vasodilatory capacity. In this context, a limited vasodilatatory 

capacity has been demonstrated in basilar arteries in SHR (Chang et al., 2012) and pial 

arteries from stroke prone SHRs (Coyle & Heistad, 1986) compared to normotensive rats 

(WKY). Thus, we propose that in hypertension parasympathetic dysfunction is a major 

problem regarding cerebral blood flow regulation and, as we proposed recently, strategies 

to circumnavigate this dilatory deficit would be clinical important especially in conditions of 

hypertension and stroke (Roloff et al., 2016).  

 

Any attempt to target the autonomic nerves to increase vasodilatatory capacity would hinge 

on an understanding on their origins and pathway trajectories. The sources of sympathetic 

and parasympathetic input to the vertebrobasilar arteries are somewhat distinct from 

innervation to the anterior cerebral arteries/Circle of Willis (Roloff et al. (2016), for review). 

Whereas the anterior cerebral circulation receives sympathetic input from the superior 

cervical ganglion and parasympathetic input from pterygopalatine ganglion, cavernous sinus 

ganglia, carotid mini-ganglion and otic ganglia, the vertebrobasilar arteries receive 

sympathetic input from stellate and superior cervical ganglia whereas the parasympathetic 

input is derived mainly from the otic ganglia. This division of innervation would potentially 

enable functional targeting of the separate components of the autonomic system and 

distinct portions of the cerebral arterial system. 

 

Role of sympathetic nerves in remodelling of vertebrobasilar arteries 

We found no change in the relative size of the vertebrobasilar arteries after removing the 

superior cervical ganglia bilaterally in PHSHR despite the substantial reduction of DBH 

immuno-positive fibres in these vessels. Note that there was no evidence of any change in 

VAChT immuno-positive fibres suggesting that their vitality is independent on this 

sympathetic input. We conclude that the remodelling of these cerebral arteries in the 

PHSHR is therefore not due to this innervation but acknowledge that we cannot rule out a 

role for the innervation that remained, which is likely from the stellate ganglia (Arbab et al. 

1988). How these arteries remodel in the SHR remains an open question but mechanisms 

including that of renin-angiotensin II (Harrap et al., 1990) and immune systems (Waki et al., 

2007), which are functionally coupled (Zubcevic et al., 2011; Fisher & Paton, 2012) are 

possible. 

A brief comment on our nNOS immunostaining. Designating nNOS to a functional class of 

nerve fibres is problematic as it is present in cholinergic and peptidergic parasympathetic 

and sensory nerve fibres. Unlike VAChT and VIP immuno-positive fibres, we found no age-

related deficit in nNOS containing fibres on vertebrobasilar arteries of adult SHR or 

normotensive rats. We also examined the number of CGRP fibres in adult rats (where the 



 

 

biggest deficit in the parasympathetic markers were seen) to ensure the high nNOS fibre 

density in the SHRs were not due to compensatory sprouting in the sensory system. We 

found no evidence of an increase in sensory fibre innervation in the adult SHR. Also we 

found no evidence of decreased CGRP functionality in the posterior cerebral arteries of 

adult SHR, as reported for dorsal root ganglia or mesenteric arteries (Supowit et al., 2001; 

Hashikawa-Hobara et al., 2012). 

 

Conclusions and clinical relevance 

We believe hypertension in the SHR is associated with a reduced ability to vasodilate 

hindbrain arteries. This is due to: (i) a dramatic, age-independent attenuation of the 

parasympathetic modulators VAChR and VIP in SHR compared to Wistar rats. There is no 

change in nNOS, hence no compensation, pointing to a net reduction in vasodilatatory 

capacity (ii) This is compounded by a reduction of noradrenergic sympathetic innervation of 

vertebrobasilar arteries in adult versus pre-hypertensive SHR where these fibres are most 

likely to be vasodilatatory in function as found in a previous study (Chang et al., 2012). These 

results may explain both the reduced cerebral blood flow and vasodilatory response to 

increases in metabolic demand in humans with hypertension (Warnert et al., 2016). Such 

deficits may increase resistance through this vascular bed and would certainly compromise 

brainstem blood flow and tissue oxygenation as we found in the SHR brainstem (Marina et 

al., 2015). They may also cause brainstem hypoperfusion during night time blood pressure 

dipping or in patients taking blood pressure lowering medication; the latter may increase 

susceptibility to non-haemorrhagic stroke. Thus, future research should examine if 

harnessing parasympathetic system functionality might restore brain perfusion and alleviate 

hypoperfusion related pathologies such as hypertension, stroke and vascular dementia 

(Roloff et al., 2016). 
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Type Abbreviated 
name 

Ab recognising host clone Concentration Supplier Catalogue 
no. 

1° Ab α-DBH Dopamine beta-
hydroxylase 

Mouse Monoclonal 1:1000 Millipore MAB308 

1° Ab α-VAChT Vesicular acetyl 
choline 
transporter 

Guinea 
pig 

Polyclonal 1:500 Millipore AB1588 

1° Ab α-VIP Vasoactive 
Intestinal 
peptide 

Rabbit Polyclonal 1:200-1:400 
 
 

Novus 
Biologicals 
(discontinued) 

NBP1-78338    
 

1° Ab α-nNOS Neuronal Nitric 
Oxide Synthase 

Mouse Monoclonal 1:50 Santa Cruz SC-5302 

1° Ab α-CGRP Calcitonin gene 
related peptide 

Rabbit Polyclonal 1:100 Millipore PC205 

 
type Ab recognising Host conjugate IF- 

colour 
Concentration Supplier Catalogue no. 

2° Ab α-Mouse Goat AF-594 red 1:500 Invitrogen or 
Molecular 
Probes 

A11005 
R37121 

2° Ab α-Mouse Goat AF-488 green 1:500 Invitrogen or 
Molecular 
Probes 

A11029 
R37120 

2° Ab α-Guinea Pig Goat DyLight-488 green 1:500 AbCam ab96959 

2° Ab α-Guinea Pig Donkey biotinylated - 1:500 Jackson IR 
(discontinued) 

706-175-148 

2° Ab α-Rabbit Goat AF-594 red 1:500 Invitrogen or 
Molecular 
Probes 

A11037 
R37117 

2° Ab α-Rabbit Goat AF-488 green 1:500 Invitrogen or 
Molecular 
Probes 

A11008 
R37116 

 

 streptavidin  AF-488 green 1:500 Invitrogen S32354 

 
Table 1. Primary and secondary antibodies employed. 

 
 

  



 

 

References 
Arbab MA, Wiklund L, Delgado T & Svendgaard NA. (1988). Stellate ganglion innervation of the 

vertebro-basilar arterial system demonstrated in the rat with anterograde and retrograde 
WGA-HRP tracing. Brain research 445, 175-180. 

 
Arbab MAR, Wiklund L & Svendgaard NA. (1986). Origin and distribution of cerebral vascular 

innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde 
and anterograde WGA-HRP tracing in the rat. Neuroscience 19, 695-708. 

 
Bevan RD. (1975). Effect of sympathetic denervation on smooth muscle cell proliferation in the 

growing rabbit ear artery. Circulation research 37, 14-19. 

 
Bevan RD & Tsuru H. (1981). Functional and structural changes in the rabbit ear artery after 

sympathetic denervation. Circulation research 49, 478-485. 

 
Cates MJ, Dickinson CJ, Hart EC & Paton JF. (2012a). Neurogenic hypertension and elevated 

vertebrobasilar arterial resistance: is there a causative link? Current hypertension reports 14, 
261-269. 

 
Cates MJ, Paton JFR, Smeeton NC & Wolfe CDA. (2012b). Hypertension Before and After Posterior 

Circulation Infarction: Analysis of Data from the South London Stroke Register. Journal of 
Stroke and Cerebrovascular Diseases 21, 612-618. 

 
Cates MJ, Steed PW, Abdala AP, Langton PD & Paton JF. (2011). Elevated vertebrobasilar artery 

resistance in neonatal spontaneously hypertensive rats. Journal of applied physiology 111, 
149-156. 

 
Chang H-H, Lee Y-C, Chen M-F, Kuo J-S & Lee TJF. (2012). Sympathetic activation increases basilar 

arterial blood flow in normotensive but not hypertensive rats. American journal of 
physiology - heart and circulatory physiology 302, H1123-H1130. 

 
Cohen Z, Bonvento G, Lacombe P, Seylaz J, MacKenzie ET & Hamel E. (1992). Cerebrovascular nerve 

fibers immunoreactive for tryptophan-5-hydroxylase in the rat: distribution, putative origin 
and comparison with sympathetic noradrenergic nerves. Brain research 598, 203-214. 

 
Coyle P & Heistad DD. (1986). Blood flow through cerebral collateral vessels in hypertensive and 

normotensive rats. Hypertension 8, II67-71. 

 
Cross S. (2018). “Modular Image Analysis v0.4.8”, April 18 edn. Zenodo, Zenodo.org. 

 
Cushing H. (1901). Concerning a definitive regulatory mechanism of the vaso-motor centre which 

controls blood pressure during cerebral compression. Bull Johns Hopk Hosp 12, 290–292. 



 

 

 
Dao HH, Lemay J, de Champlain J, deBlois D & Moreau P. (2001). Norepinephrine-induced aortic 

hyperplasia and extracellular matrix deposition are endothelin-dependent. Journal of 
hypertension 19, 1965-1973. 

 
Dauphin F & Mackenzie ET. (1995). Cholinergic and vasoactive intestinal polypeptidergic innervation 

of the cerebral arteries. Pharmacology & therapeutics 67, 385-417. 

 
Dhítal KK, Gerli R, Lincoln J, Milner P, Tanganelli P, Weber G, Fruschelli C & Burnstock G. (1988). 

Increased density of perivascular nerves to the major cerebral vessels of the spontaneously 
hypertensive rat: differential changes in noradrenaline and neuropeptide Y during 
development. Brain research 444, 33-45. 

 
Edvinsson L, Elsås T, Suzuki N, Shimizu T & Lee TJ. (2001). Origin and co-localization of nitric oxide 

synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microscopy research 
and technique 53, 221-228. 

 
Edvinsson L & Krause D. (2002). Catecholamines. In Cerebral Blood Flow and Metabolism 2nd Edition 

edn, ed. Edvinsson L & Krause D, pp. 191-211. Lippincott, Williams & Wilkins, Philadelphia. 

 
Fisher JP & Paton JFR. (2012). The sympathetic nervous system and blood pressure in humans: 

implications for hypertension. Journal of Human Hypertension 26, 463-475. 

 
Furuyama M. (1962). Histometrical Investigations of Arteries in Reference to Arterial Hypertension. 

The Tohoku Journal of Experimental Medicine 76, 388-414. 

 
Gaw AJ, Aberdeen J, Humphrey PPA, Wadsworth RM & Burnstock G. (1991). Relaxation of sheep 

cerebral arteries by vasoactive intestinal polypeptide and neurogenic stimulation: inhibition 
by l-NG-monomethyl arginine in endothelium-denuded vessels. British journal of 
pharmacology 102, 567-572. 

 
Gonzalez C, Barroso C, Martin C, Gulbenkian S & Estrada C. (1997). Neuronal nitric oxide synthase 

activation by vasoactive intestinal peptide in bovine cerebral arteries. Journal of cerebral 
blood flow and metabolism : official journal of the International Society of Cerebral Blood 
Flow and Metabolism 17, 977-984. 

 
Grant S, Lutz EM, McPhaden AR & Wadsworth RM. (2005). Location and function of VPAC1, VPAC2 

and NPR-C receptors in VIP-induced vasodilation of porcine basilar arteries. Journal of 
cerebral blood flow and metabolism : official journal of the International Society of Cerebral 
Blood Flow and Metabolism 26, 58-67. 

 
Grundy D. (2015). Principles and standards for reporting animal experiments in The Journal of 

Physiology and Experimental Physiology. J Physiol 593, 2547-2549. 



 

 

 
Harrap SB. (1991). Angiotensin Converting Enzyme Inhibitors, Regional Vascular Hemodynamics, and 

the Development and Prevention of Experimental Genetic Hypertension. American Journal 
of Hypertension 4, 212S-216S. 

 
Harrap SB, Van der Merwe WM, Griffin SA, Macpherson F & Lever AF. (1990). Brief angiotensin 

converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces 
blood pressure long-term. Hypertension 16, 603-614. 

 
Hashikawa-Hobara N, Hashikawa N, Zamami Y, Takatori S & Kawasaki H. (2012). The mechanism of 

calcitonin gene-related peptide-containing nerve innervation. J Pharmacol Sci 119, 117-121. 

 
Hesp ZC, Zhu Z, Morris TA, Walker RG & Isaacson LG. (2012). Sympathetic reinnervation of peripheral 

targets following bilateral axotomy of the adult superior cervical ganglion. Brain research 
1473, 44-54. 

 
Ibayashi S, Ogata J, Sadoshima S, Fujii K, Yao H & Fujishima M. (1986). The effect of long-term 

antihypertensive treatment on medial hypertrophy of cerebral arteries in spontaneously 
hypertensive rats. Stroke; a journal of cerebral circulation 17, 515-519. 

 
Igawa A, Nozawa T, Yoshida N, Fujii N, Inoue M, Tazawa S, Asanoi H & Inoue H. (2000). 

Heterogeneous cardiac sympathetic innervation in heart failure after myocardial infarction 
of rats. American journal of physiology Heart and circulatory physiology 278, H1134-1141. 

 
Kalmar AF, Van Aken J, Caemaert J, Mortier EP & Struys MMRF. (2005). Value of Cushing reflex as 

warning sign for brain ischaemia during neuroendoscopy. British Journal of Anaesthesia 94, 
791-799. 

 
Kurtz TW, Montano M, Chan L & Kabra P. (1989). Molecular evidence of genetic heterogeneity in 

Wistar-Kyoto rats: implications for research with the spontaneously hypertensive rat. 
Hypertension 13, 188-192. 

 
Lee RM, Triggle CR, Cheung DW & Coughlin MD. (1987). Structural and functional consequence of 

neonatal sympathectomy on the blood vessels of spontaneously hypertensive rats. 
Hypertension 10, 328-338. 

 
Lee TJ & Saito A. (1984). Altered cerebral vessel innervation in the spontaneously hypertensive rat. 

Circulation research 55, 392-403. 

 
Lee TJF. (2002). Sympathetic modulation of nitrergic neurogenic vasodilation in cerebral arteries. Jpn 

J Pharmacol 88, 26-31. 

 



 

 

Mangiarua EI & Lee RM. (1990). Increased sympathetic innervation in the cerebral and mesenteric 
arteries of hypertensive rats. Canadian journal of physiology and pharmacology 68, 492-499. 

 
Marina N, Ang R, Machhada A, Kasymov V, Karagiannis A, Hosford PS, Mosienko V, Teschemacher 

AG, Vihko P, Paton JFR, Kasparov S & Gourine AV. (2015). Brainstem hypoxia contributes to 
the development of hypertension in the spontaneously hypertensive rat. Hypertension 65, 
775-783. 

 
McBryde FD, Malpas SC & Paton JFR. (2017). Intracranial mechanisms for preserving brain blood flow 

in health and disease. Acta physiologica 219, 274-287. 

 
Menuet C, Le S, Dempsey B, Connelly AA, Kamar JL, Jancovski N, Bassi JK, Walters K, Simms AE, 

Hammond A, Fong AY, Goodchild AK, McMullan S & Allen AM. (2017). Excessive Respiratory 
Modulation of Blood Pressure Triggers Hypertension. Cell Metab 25, 739-748. 

 
Mione MC, Dhital KK, Amenta F & Burnstock G. (1988). An increase in the expression of 

neuropeptidergic vasodilator, but not vasoconstrictor, cerebrovascular nerves in aging rats. 
Brain research 460, 103-113. 

 
Muller M, van der Graaf Y, Visseren FL, Mali WPTM, Geerlings MI & for the SSG. (2012). 

Hypertension and longitudinal changes in cerebral blood flow: The SMART-MR study. Annals 
of Neurology 71, 825-833. 

 
Nordborg C, Fredriksson K & Johansson BB. (1985). The morphometry of consecutive segments in 

cerebral arteries of normotensive and spontaneously hypertensive rats. Stroke; a journal of 
cerebral circulation 16, 313-320. 

 
Okuda T, Sumiya T, Iwai N & Miyata T. (2002). Difference of gene expression profiles in spontaneous 

hypertensive rats and Wistar–Kyoto rats from two sources. Biochemical and Biophysical 
Research Communications 296, 537-543. 

 
Paton JF, Dickinson CJ & Mitchell G. (2009). Harvey Cushing and the regulation of blood pressure in 

giraffe, rat and man: introducing 'Cushing's mechanism'. Experimental physiology 94, 11-17. 

 
Paton JFR. (1996). A working heart-brainstem preparation of the mouse. Journal of Neuroscience 

Methods 65, 63-68. 

 
Rapp JP. (1987). Use and misuse of control strains for genetically hypertensive rats. Hypertension 10, 

7-10. 

 
Rodbard S & Stone W. (1955). Pressor Mechanisms Induced by Intracranial Compression. Circulation 

12, 883-890. 

 



 

 

Roloff EvL, Tomiak-Baquero AM, Kasparov S & Paton JFR. (2016). Parasympathetic innervation of 
vertebrobasilar arteries: is this a potential clinical target? The Journal of Physiology 594, 
6463-6485. 

 
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET & Eliceiri KW. (2017). ImageJ2: 

ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529. 

 
Sato T, Sato S & Suzuki J. (1980). Correlation with superior cervical sympathetic ganglion and 

sympathetic nerve innervation of intracranial artery-electron microscopical studies. Brain 
research 188, 33-41. 

 
Savastano LE, Castro AE, Fitt MR, Rath MF, Romeo HE & Muñoz EM. (2010). A standardized surgical 

technique for rat superior cervical ganglionectomy. Journal of Neuroscience Methods 192, 
22-33. 

 
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, 

Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P & Cardona 
A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676. 

 
Schmidt EA, Czosnyka Z, Momjian S, Czosnyka M, Bech RA & Pickard JD. (2005). Intracranial 

baroreflex yielding an early Cushing response in human. In Intracranial Pressure and Brain 
Monitoring XII, ed. Poon WS, Chan MTV, Goh KYC, Lam JMK, Ng SCP, Marmarou A, Avezaat 
CJJ, Pickard JD, Czosnyka M, Hutchinson PJA & Katayama Y, pp. 253-256. Springer Vienna, 
Vienna. 

 
Schmidt EA, Despas F, Pavy-Le Traon A, Czosnyka Z, Pickard JD, Rahmouni K, Pathak A & Senard JM. 

(2018). Intracranial Pressure Is a Determinant of Sympathetic Activity. Frontiers in Physiology 
9. 

 
Schröder H & Vollrath L. (1985). Distribution of dopamine-beta-hydroxylase—like immunoreactivity 

in the rat pineal organ. Histochemistry 83, 375. 

 
Seebeck J, Löwe M, Kruse M-L, Schmidt WE, Mehdorn HM, Ziegler A & Hempelmann RG. (2002). The 

vasorelaxant effect of pituitary adenylate cyclase activating polypeptide and vasoactive 
intestinal polypeptide in isolated rat basilar arteries is partially mediated by activation of 
nitrergic neurons. Regulatory peptides 107, 115-123. 

 
Simms AE, Paton JFR, Pickering AE & Allen AM. (2009). Amplified respiratory–sympathetic coupling 

in the spontaneously hypertensive rat: does it contribute to hypertension? The Journal of 
Physiology 587, 597-610. 

 
Smeda JS, Lee RM & Forrest JB. (1988). Prenatal and postnatal hydralazine treatment does not 

prevent renal vessel wall thickening in SHR despite the absence of hypertension. Circulation 
research 63, 534-542. 



 

 

 
St Lezin E, Simonet L, Pravenec M & Kurtz TW. (1992). Hypertensive strains and normotensive 

'control' strains. How closely are they related? Hypertension 19, 419-424. 

 
Steger C. (1998). An unbiased detector of curvilinear structures. IEEE Transactions on Pattern 

Analysis and Machine Intelligence 20, 113-125. 

 
Supowit SC, Zhao H & DiPette DJ. (2001). Nerve Growth Factor Enhances Calcitonin Gene-Related 

Peptide Expression in the Spontaneously Hypertensive Rat. Hypertension 37, 728-732. 

 
Suzuki N, Hardebo JE & Owman C. (1988). Origins and pathways of cerebrovascular vasoactive 

intestinal polypeptide-positive nerves in rat. Journal of cerebral blood flow and metabolism 
8, 697-712. 

 
Wagner T. (2017). “Ridge Detection v1.4.0”, 2017, August 20 edn. Zenodo, Zenodo. 

 
Waki H, Liu B, Miyake M, Katahira K, Murphy D, Kasparov S & Paton JF. (2007). Junctional adhesion 

molecule-1 is upregulated in spontaneously hypertensive rats: evidence for a 
prohypertensive role within the brain stem. Hypertension 49, 1321-1327. 

 
Warnert EA, Rodrigues JC, Burchell AE, Neumann S, Ratcliffe LE, Manghat NE, Harris AD, Adams ZH, 

Nightingale AK, Wise RG, Paton JF & Hart EC. (2016). Is High Blood Pressure Self-Protection 
for the Brain? Circulation research. 

 
Yu J-G, Kimura T, Chang X-F & Lee TJF. (1998). Segregation of VIPergic–nitric oxidergic and 

cholinergic–nitric oxidergic innervation in porcine middle cerebral arteries. Brain research 
801, 78-87. 

 
Zubcevic J, Waki H, Raizada MK & Paton JFR. (2011). Autonomic-immune-vascular interaction: An 

emerging concept for neurogenic hypertension. Hypertension 57, 1026-1033. 

 

 

 
   
 
 
 
  



 

 

Figure legends 
 
Figure 1.  
Vertebrobasilar artery peel and analysis of its autonomic innervation. 
A) Vertebro-basilar arteries in natural light (phase contrast) image. Areas analysed following 

IHC are indicated in yellow: Vertebral arteries (VAs), Basilar artery anteriorly (BAa) and 

posteriorly (BAp). Scale bar 1mm. B) Representative red and green channel images (in 

example: α-DBH-594 and α-VAChT-488 stained vertebral artery (VA) from adult Wistar rat), 

showing placement of the 3 ‘masks’ (measuring 150x150µm) used to demark areas for fibre 

counting. Areas were positioned semi-randomly on the vessel that was in focus. The number 

of fibres in each region was counted, summated, and the average fibre densities per mm2 

was calculated. Subsequently the same areas were used for the green channel to assess AF-

488 fibre densities.  C) Workflow diagram of MIA plugin for Fiji used to analyse % overlap 

between DBH and VAChT fibres and  D) output image  showing operator defined ROI 

(orange), outline of automatically detected DBH fibres with proximity zones applied (white) 

and operator drawn VAChT fibres (green). Overlays (blue) are defined as where VAChT 

fibres occur within DBH proximity zones.    

 
 
Figure 2.  
DBH immunofluorescence staining of vertebrobasilar arteries is decreased in adult 
hypertensive rats. 
No change (juveniles, top) or decreased (adult, bottom) sympathetic fibre densities in 

vertebrobasilar arteries of SHRs (■) compared to age-matched Wistars (□). In juvenile rats 

2w-RM-ANOVA found a significant (p<0.05) interaction of strain x region and a highly 

significant difference in innervation by region (p<0.001), but no effect of strain. In adult rats, 

the effects of both strain and region are highly significant (p<0.01). The post-hoc test reveals 

the effect is only significant for areas VA and BAp. *p<0.05, **p<0.01. With-in strain 

comparisons found no significant difference in fibre densities in Wistar rats across age, but a 

significant decrease in the SHRs (p<0.01). The post-hoc test reveals the effect is significant 

for area BAa (indicated as a white † on the adult panel). †p<0.05. Both strains had a 

significant effect of region (p<0.001 in Wistars and P<0.01 in SHRs). Representative images 

of area BAp labelled with α-DBH-594 for each group.  

 
Figure 3.  
Distinct DBH patterns of innervation based on the location of the vertebrobasilar artery. 
Examples of sparse, intermediate and dense innervation patterns of DBH-labelled fibres in 

Wistars (A-C) and SHRs (D-F). The location along the vessel and the age of the animal is 

indicated. Scale bar 100µm.  

 
Figure 4.  
Innervation densities across the vertebrobasilar arteries for juvenile and adult Wistar and 
SH rats. 



 

 

Distribution of innervation densities of DBH-labelled fibres in the 3 regions examined 

according to age and strain. Note the denser innervation is observed more posteriorly (BAp 

& VA) and it is more prominent in juveniles than adults. Note, the y-axis in VA is double that 

for BAa and BAp as observations have been collected from 2 VAs in each rat. However, the 

scale is set to allow direct comparisons of proportions. The biggest change in sympathetic 

innervation density between juveniles and adult is seen in the VA from SHRs.  

 
Figure 5.  
Parasympathetic cholinergic innervation of vertebrobasilar arteries is reduced in the 
hypertensive rat. 
A dramatic deficit in cholinergic parasympathetic labelling (α-VAChT) is evident in both 

PHSH (top) and SH rats (■) compared to age-matched Wistar rats (□) across the 3 regions. 

Notably the decrease is prior to the onset of hypertension. The 2w-RM-ANOVA reveals a 

highly significant effect of strain (P<0.001) and a significant effect of region (p<0.05) for both 

age groups. Post hoc analyses found the effects significant (p<0.001) in all regions. 

**p<0.01, ***p<0.001. With-in strain comparisons found significant difference in fibre 

densities in the Wistar rats across age (p<0.001) and with respect to region(p<0.001), post-

hoc differences across regions are indicated with †s on the adult panel). †p<0.05 ††p<0.01 

†††p<0.001. No differences could be found between the two groups of SH rats. 

Representative fluorescent microscopy images of area BAp for each group labelled with the 

cholinergic parasympathetic marker α-VAChT-488, including excerpts of adult innervation at 

higher magnification (far right).  

 
Figure 6.  
Juxta-positioning of sympathetic and parasympathetic fibres targeting the vertebrobasilar 
arteries and calculation of % overlap. 
A) Innervation on vertebral artery illustrating how sympathetic (α-DBH-594 and cholinergic 

parasympathetic (α-VAChT-488) fibres tend to run in parallel. The higher ratio of 

sympathetic to cholinergic parasympathetic innervation is also obvious. Adult male SHR, 

confocal z-stack (depth: 25 µm). B) The proportion of DBH fibre with VAChT overlap in SH 

rats is approximately 20% - half that of Wistars (40%). 2w-RM-ANOVA revealed a significant 

effect of strain (P<0.01) for both juveniles and adults, but no effect of region. In juvenile rats 

post hoc analyses found the effects strongest in VA (p<0.01). BAp and BAa were significant 

(p<0.05) both in juveniles and adults. *p<0.05 **p<0.01. The with-in strain comparisons 

found no differences across ages or regions. Representative images of the Fiji-MIA analysis 

output from area BAp for each strain and age are shown with examples of the original 

images of adult fibre juxtapositions (far left).  

 
Figure 7.  
Parasympathetic vasoactive intestinal peptidergic innervation of vertebrobasilar arteries 
is reduced in the hypertensive rat. 
The peptidergic VIP parasympathetic labelling is similar to that seen for VAChT. A deficit is 

evident in both juvenile (top) and adult SHRs (■) compared to age-matched Wistar rats (□). 



 

 

Notably the decrease is prior to the onset of hypertension. The effect of strain, but not 

region, is significant in juveniles and adults. Regional differences are indicated on the figure. 

**p<0.01, ***p<0.001. With-in strain comparisons found significant difference in fibre 

densities in the Wistar rats across age (p<0.001) but not with respect to region. Post-hoc 

differences in age for each region are indicated with †s on the adult panel. ††p<0.01. In 

SHRs there was no effect of age or region, but at significant interaction (p<0.05) between 

the two groups. VIP fibre densities are significantly higher in Wistar adult rats than juveniles, 

but no such change is observed in SHRs. Representative fluorescent microscopy images of 

area BAp for each group labelled with the peptidergic parasympathetic marker α-VIP-594, 

excerpts of adult innervation at higher magnification (far right). 

 
Figure 8.  
Juxta-positioning of cholinergic and peptidergic autonomic fibres innervating the 
vertebrobasilar arteries. 
Peptidergic and cholinergic markers sometimes, but far from always, co-localise in the same 

fibres. Though the two fibre types tend to run in parallel, in the majority of fibres there is a 

clear separation of the two markers. Confocal image of α-VIP-594 and α-VAChT-488 

immunofluorescence in the posterior basilar artery in an adult Wistar rat. Flattened confocal 

100µm z-stack and an excerpt shown at higher power.  

 
Figure 9.  
Neuronal nitric oxide synthase immnunopositive fibre labelling is similar between normo- 
and hypertensive rats. 
Representative fluorescent microscopy images of BAp for each group labelled with the 

parasympathetic and sensory effector nerve marker α-nNOS-594. There are no strain 

related deficits in nNOS labelling at any age. In the juvenile rats there is a position (p<0.01) 

related dip in innervation with the effect being strongest at positions distal to the circle of 

Willis, possibly reflecting that the innervation is still developing. There are significant age-

related differences in the amount of nNOS fibres in both strains. In Wistar rats they are 

significant for VA and in SHRs for VA and BAp (see text for details). †p<0.05 ††p<0.01 

†††p<0.001.  Representative fluorescent microscopy images of area BAp for each group 

labelled with the parasympathetic and sensory effector nerve marker α-nNOS-594. 

 
Figure 10.  
Parasympathetic cholinergic and neuronal nitric oxide synthase fibres: same or distinct 
axons? 
Though the majority of VAChT appear to colocalise with nNOS positive fibres the two 

markers seem to occupy different compartments of the fibres, so it difficult to assess if co-

localisation in the fibres is true or if the markers intertwine. Fibres that are only nNOS (red 

arrows) or only VAChT positive (green arrows) can also be found. The images confirm/reflect the 

deficit in the cholinergic marker but equal and more labelling of nNOS across the two 

strains. Confocal images from juvenile Wistar and SHR double labelled with α-nNOS-594 and 

α-VAChT-488 immunofluorescence in the posterior basilar artery. Confocal image of 



 

 

flattened z-stacks through one side of flattened vessel containing the full depth of the 

adventitia.  

 
Figure 11.  
Calcitonin gene related peptide immunofluorescence is similar between Wistar and SH 
rats.  
Representative fluorescent microscopy images of area BAp for adult Wistar rats and SHRs 

labelled with α-CGRP-488 (green arrows). There are no differences in CGRP labelling in 

Wistar and SHR adult rats. The highest density of CGRP in the regions examined occurs in 

BAp. The effect of region is significant (p<0.05). 

 
Figure 12.  
Elevated activity of the sympathetic fibres innervating the vertebrobasilar arteries of 

hypertensive compared to normotensive rats.  

Traces of integrated (∫) and absolute activity of the external cervical sympathethic nerve 

(eCSN), internal cervical sympathetic nerve (iCSN), lumbar sympathetic nerve (lSN) and 

phrenic nerve (PN) in juvenile Wistar and PHSH rats. The arrow is indicating the extra 

component of activity in the iCSN firing (pre-I burst) occurring prior to the inspirartory 

activity in PN.  

 
 
Figure 13. 
Identification of excised tissues as superior cervical ganglion and development in blood 
pressure following excision 
A) The excised tissue was positive for tyrosine hydroxylase protein as shown on by western 

blotting. Co-localization study of α-DβH and α-TH showed that cell bodies within the tissue 

are positive for both tyrosine hydroxylase as well as dopamine β hydroxylase. All DβH 

fluorescence is localized to TH fluorescence suggesting that they mark the same structures. 

Scale bar: 50 µm. B) The blood pressure measurements (in mmHg) were obtained using DSI 

telemetry. After recording 3 days of baseline animals underwent either sham or SCGx 

treatment and blood pressure was recorded continually for 14 days. The traces are 

presented as difference from the baseline. The systolic and diastolic blood pressure traces 

of ganglionectomized and sham operated animals are presented as changes from baseline.  

 

Figure 14. 
Bilateral superior cervical ganglionectomy in SHR attenuates sympathetic fibre 

innervation of vertebrobasilar arteries but is without effect on their remodelling. 

A) Representative images of vertebrobasilar arteries showing immunofluorescence staining 

α-DBH-AF594 and α-VAChT-AF488 after SCGx or sham operation in SHR and corresponding 

bright field (BF) images. The arrowheads indicate exemplar sympathetic fibres stained with 

DBH antibody. B) The reduction in DBH staining is clearly evident after ganglionectomy. % 

Change in Sympathetic (DBH positive) and parasympathetic (VAChT positive) fibre densities 



 

 

in xSCG compared to Sham animals according to area. Significant differences to normalised 

Sham values are indicated on the graph: *p<0.05, ***p<0.001. C) Coronal images of the 

basilar and vertebral arteries in SCGx and sham operated SHR. There is no evidence 

remodelling in the 14 days since ganglionectomy in SCGx in comparison to sham operated 

rats. 
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Figure 1. 
Vertebrobasilar artery peel and analysis of its autonomic innervation.
A) Vertebro-basilar arteries in natural light (phase contrast) image. Areas analysed following IHC are indicated in 
yellow: Vertebral arteries (VAs), Basilar artery anteriorly (BAa) and posteriorly (BAp). Scale bar 1mm. B) 
Representative red and green channel images (in example: α-DBH-594 and α-VAChT-488 stained vertebral artery 
(VA) from adult Wistar rat), showing placement of the 3 ‘masks’ (measuring 150x150µm) used to demark areas for 
fibre counting. Areas were positioned semi-randomly on the vessel that was in focus. The number of fibres in each 
region was counted, summated, and the average fibre densities per mm2 was calculated. Subsequently the same 
areas were used for the green channel to assess AF-488 fibre densities.  C) Workflow diagram of MIA plugin for Fiji 
used to analyse % overlap between DBH and VAChT fibres and D) output image showing operator defined ROI 
(orange), outline of automatically detected DBH fibres with proximity zones applied (white) and operator drawn 
VAChT fibres (green). Overlays (blue) are defined as where VAChT fibres occur within DBH proximity zones.  



Figure 2. 

Figure 2. 
DBH immunofluorescence staining of vertebrobasilar arteries is decreased in adult hypertensive rats.
No change (juveniles, top) or decreased (adult, bottom) sympathetic fibre densities in vertebrobasilar arteries of 
SHRs (■) compared to age-matched Wistars (□). In juvenile rats 2w-RM-ANOVA found a significant (p<0.05) 
interaction of strain x region and a highly significant difference in innervation by region (p<0.001), but no effect of 
strain. In adult rats, the effects of both strain and region are highly significant (p<0.01). The post-hoc test reveals 
the effect is only significant for areas VA and BAp. *p<0.05, **p<0.01. With-in strain comparisons found no 
significant difference in fibre densities in Wistar rats across age, but a significant decrease in the SHRs (p<0.01). 
The post-hoc test reveals the effect is significant for area BAa (indicated as a white † on the adult panel). †p<0.05. 
Both strains had a significant effect of region (p<0.001 in Wistars and P<0.01 in SHRs). Representative images of 
area BAp labelled with α-DBH-594 for each group. 
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Figure 3. 

Distinct DBH patterns of innervation based on the location of the vertebrobasilar artery.

Examples of sparse, intermediate and dense innervation patterns of DBH-labelled fibres in Wistars (A-C) and SHRs 

(D-F). The location along the vessel and the age of the animal is indicated. Scale bar 100µm.
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Figure 4. 

Innervation densities across the vertebrobasilar arteries for juvenile and adult Wistar and SH rats.

Distribution of innervation densities of DBH-labelled fibres in the 3 regions examined according to age and strain. 

Note the denser innervation is observed more posteriorly (BAp & VA) and it is more prominent in juveniles than 

adults. Note, the y-axis in VA is double that for BAa and BAp as observations have been collected from 2 VAs in 

each rat. However, the scale is set to allow direct comparisons of proportions. The biggest change in sympathetic 

innervation density between juveniles and adult is seen in the VA from SHRs. 
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Figure 5.

Parasympathetic cholinergic innervation of vertebrobasilar arteries is reduced in the hypertensive rat.

A dramatic deficit in cholinergic parasympathetic labelling (α-VAChT) is evident in both PHSH (top) and SH rats (■) 

compared to age-matched Wistar rats (□) across the 3 regions. Notably the decrease is prior to the onset of 

hypertension. The 2w-RM-ANOVA reveals a highly significant effect of strain (P<0.001) and a significant effect of region 

(p<0.05) for both age groups. Post hoc analyses found the effects significant (p<0.001) in all regions. **p<0.01, 

***p<0.001. With-in strain comparisons found significant difference in fibre densities in the Wistar rats across age 

(p<0.001) and with respect to region(p<0.001), post-hoc differences across regions are indicated with †s on the adult 

panel). †p<0.05 ††p<0.01 †††p<0.001. No differences could be found between the two groups of SH rats. 

Representative fluorescent microscopy images of area BAp for each group labelled with the cholinergic 

parasympathetic marker α-VAChT-488, including excerpts of adult innervation at higher magnification (far right). 
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Figure 6.

Juxta-positioning of sympathetic and parasympathetic fibres targeting the vertebrobasilar arteries and 

calculation of % overlap.

A) Innervation on vertebral artery illustrating how sympathetic (α-DBH-594 and cholinergic parasympathetic (α-

VAChT-488) fibres tend to run in parallel. The higher ratio of sympathetic to cholinergic parasympathetic 

innervation is also obvious. Adult male SHR, confocal z-stack (depth: 25 µm). B) The proportion of DBH fibre with 

VAChT overlap in SH rats is approximately 20% - half that of Wistars (40%). 2w-RM-ANOVA revealed a significant 

effect of strain (P<0.01) for both juveniles and adults, but no effect of region. In juvenile rats Post hoc analyses 

found the effects strongest in VA (p<0.01) but it is significant (p<0.05) in BAp and BAa too, whereas they only reach 

significance in BAp and BAa in the adults (p<0,05) *p<0.01 **p<0.01, The with-in strain comparisons found no 

differences across ages or regions. Representative images of the Fiji-MIA analysis output from area BAp for each 

strain and age are shown with examples of the original images of adult fibre juxtapositions (far left). Scale bar 

100µm.
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Figure 7.

Parasympathetic vasoactive intestinal peptidergic innervation of vertebrobasilar arteries is reduced in the 

hypertensive rat.

The peptidergic VIP parasympathetic labelling is similar to that seen for VAChT. A deficit is evident in both juvenile 

(top) and adult SHRs (■) compared to age-matched Wistar rats (□). Notably the decrease is prior to the onset of 

hypertension. The effect of strain, but not region, is significant in juveniles and adults. Regional differences are 

indicated on the figure. **p<0.01, ***p<0.001. With-in strain comparisons found significant difference in fibre 

densities in the Wistar rats across age (p<0.001) but not with respect to regionl. Post-hoc differences in age for 

each region are indicated with †s on the adult panel. ††p<0.01. In SHRs there was no effect of age or region, but a  

significant interaction (p<0.05) between the two groups. VIP fibre densities are significantly higher in Wistar adult 

rats than juveniles, but no such change is observed in SHRs. Representative fluorescent microscopy images of area 

BAp for each group labelled with the peptidergic parasympathetic marker α-VIP-594, excerpts of adult innervation 

at higher magnification (far right).
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Figure 8. 

Juxta-positioning of cholinergic and peptidergic autonomic fibres innervating the vertebrobasilar arteries.

Peptidergic and cholinergic markers sometimes, but far from always, co-localise in the same fibres. Though the two 

fibre types tend to run in parallel, in the majority of fibres there is a clear separation of the two markers. Confocal 

image of α-VIP-594 and α-VAChT-488 immunofluorescence in the posterior basilar artery in an adult Wistar rat. 

Flattened confocal 100µm z-stack and an excerpt shown at higher power. 
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Figure 9. 

Neuronal nitric oxide synthase immnunopositive fibre labelling is similar between normo- and hypertensive rats.

Representative fluorescent microscopy images of BAp for each group labelled with the parasympathetic and 

sensory effector nerve marker α-nNOS-594. There are no strain related deficits in nNOS labelling at any age. In the 

juvenile rats there is a region (p<0.01) related dip in innervation with the effect being strongest at positions distal 

to the circle of Willis, possibly reflecting that the innervation is still developing. There are significant age-related 

differences in the amount of nNOS fibres in both strains. In Wistar rats they are significant for VA and in SHRs for 

VA and BAp (see text for details). †p<0.05 ††p<0.01 †††p<0.001.  Representative fluorescent microscopy images of 

area BAp for each group labelled with the parasympathetic and sensory effector nerve marker α-nNOS-594.
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Figure 10. 

Parasympathetic cholinergic and neuronal nitric oxide synthase fibres: same or distinct axons?

Though the majority of VAChT appear to colocalise with nNOS positive fibres the two markers seem to occupy 

different compartments of the fibres, so it difficult to assess if co-localisation in the fibres is true or if the markers 

intertwine. Fibres that are only nNOS (red arrows) or only VAChT positive (green arrows) can also be found. The 

images confirm/reflect the deficit in the cholinergic marker but equal and more labelling of nNOS across the two 

strains. Confocal images from juvenile Wistar and SHR double labelled with α-nNOS-594 and α-VAChT-488 

immunofluorescence in the posterior basilar artery. Confocal image of flattened z-stacks through one side of 

flattened vessel containing the full depth of the adventitia. 
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Figure 11. 

Calcitonin gene related peptide immunofluorescence is similar between Wistar and SH rats. 

Representative fluorescent microscopy images of area BAp for adult Wistar rats and SHRs labelled with α-CGRP-

488 (green arrows). There are no differences in CGRP labelling in Wistar and SHR adult rats. The highest density of 

CGRP in the regions examined occurs in BAp. The effect of region is significant (p<0.05).
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Figure 12. 

Elevated activity of the sympathetic fibres innervating the vertebrobasilar arteries of hypertensive compared to 
normotensive rats. Traces of integrated (∫) and absolute activity of the external cervical sympathethic nerve 
(eCSN), internal cervical sympathetic nerve (iCSN), lumbar sympathetic nerve (lSN) and phrenic nerve (PN) in 
juvenile Wistar and PHSH rats. The arrow is indicating the extra component of activity in the iCSN firing (pre-I burst) 
occurring prior to the inspirartory activity in PN. 
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Figure 13.

Identification of excised tissues as superior cervical ganglion and development in blood pressure following 

excision

A) The excised tissue was positive for tyrosine hydroxylase protein as shown on by western blotting. Co-localization 
study of α-DβH and α-TH showed that cell bodies within the tissue are positive for both tyrosine hydroxylase as 
well as dopamine β hydroxylase. All DβH fluorescence is localized to TH fluorescence suggesting that they mark the 
same structures. Scale bar: 50 µm. B) The blood pressure measurements (in mmHg) were obtained using DSI 
telemetry. After recording 3 days of baseline animals underwent either sham or SCGx treatment and blood 
pressure was recorded continually for 14 days. The traces are presented as difference from the baseline. The 
systolic and diastolic blood pressure traces of ganglionectomized and sham operated animals are presented as 
changes from baseline. 
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Figure 14.

Bilateral superior cervical ganglionectomy in SHR attenuates sympathetic fibre innervation of vertebrobasilar arteries but is 
without effect on their remodellingRepresentative images of vertebrobasilar arteries showing immunofluorescence staining α-
DBH-AF594 and α-VAChT-AF488 after SCGx or sham operation in SHR and corresponding bright field (BF) images. The arrowheads 
indicate exemplar sympathetic fibres stained with DBH antibody. The reduction in DBH staining is clearly evident after 
ganglionectomy. % Change in Sympathetic (DBH positive) and parasympathetic (VAChT positive) fibre densities in xSCG compared 
to Sham animals according to area. Significant differences to normalised Sham values are indicated on the graph: *p<0.05, 
***p<0.001. Coronal images of the basilar and vertebral arteries in SCGx and sham operated SHR. There is no evidence 
remodelling in the 14 days since ganglionectomy in SCGx in comparison to sham operated rats.
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