25 research outputs found

    Identification of de novo variants in nonsyndromic cleft lip with/without cleft palate patients with low polygenic risk scores

    Get PDF
    Background: Nonsyndromic cleft lip with/without cleft palate (nsCL/P) is a congenital malformation of multifactorial etiology. Research has identified >40 genome-wide significant risk loci, which explain less than 40% of nsCL/P heritability. Studies show that some of the hidden heritability is explained by rare penetrant variants. Methods: To identify new candidate genes, we searched for highly penetrant de novo variants (DNVs) in 50 nsCL/P patient/parent-trios with a low polygenic risk for the phenotype (discovery). We prioritized DNV-carrying candidate genes from the discovery for resequencing in independent cohorts of 1010 nsCL/P patients of diverse ethnicities and 1574 population-matched controls (replication). Segregation analyses and rare variant association in the replication cohort, in combination with additional data (genome-wide association data, expression, protein-protein-interactions), were used for final prioritization. Conclusion: In the discovery step, 60 DNVs were identified in 60 genes, including a variant in the established nsCL/P risk gene CDH1. Re-sequencing of 32 prioritized genes led to the identification of 373 rare, likely pathogenic variants. Finally, MDN1 and PAXIP1 were prioritized as top candidates. Our findings demonstrate that DNV detection, including polygenic risk score analysis, is a powerful tool for identifying nsCL/P candidate genes, which can also be applied to other multifactorial congenital malformations.Funding information: The present study was supported by the German Research Foundation (DFG)-Grants BE 3828/8-1, LU 1944/2-1, MA 2546/5-1, and LU1944/3-1. ACKNOWLEDGMENTS: The authors thank all patients, relatives, and control individuals for their participation. We thank the German support group for individuals with cleft lip and/or palate (Wolfgang Rosenthal Gesellschaft) for assistance with recruitment.We acknowledge the invaluable assistance of all clinical, laboratory, and bioinformatic personnel. The authors thank the Next Generation Sequencing Core Facility of the Medical Faculty of the University of Bonn for sequencing the samples that were used in this study. DbGaP datasets were accessed through dbGaP accession number phs000094.v1.p1 (Supplemental Acknowledgments). Finally, the authors thank the Genome Aggregation Database (gnomAD), and all groups that provided exome and genome variant data to this resource. A full list of gnomAD contributors is provided in the gnomAD flagship paper (Karczewski et al., 2020). Open Access funding enabled and organized by Projekt DEAL

    Identification of de novo variants in nonsyndromic cleft lip with/without cleft palate patients with low polygenic risk scores

    Get PDF
    [Background]: Nonsyndromic cleft lip with/without cleft palate (nsCL/P) is a congenital malformation of multifactorial etiology. Research has identified >40 genome-wide significant risk loci, which explain less than 40% of nsCL/P heritability. Studies show that some of the hidden heritability is explained by rare penetrant variants. [Methods]: To identify new candidate genes, we searched for highly penetrant de novo variants (DNVs) in 50 nsCL/P patient/parent-trios with a low polygenic risk for the phenotype (discovery). We prioritized DNV-carrying candidate genes from the discovery for resequencing in independent cohorts of 1010 nsCL/P patients of diverse ethnicities and 1574 population-matched controls (replication). Segregation analyses and rare variant association in the replication cohort, in combination with additional data (genome-wide association data, expression, protein–protein-interactions), were used for final prioritization. [Conclusion]: In the discovery step, 60 DNVs were identified in 60 genes, including a variant in the established nsCL/P risk gene CDH1. Re-sequencing of 32 prioritized genes led to the identification of 373 rare, likely pathogenic variants. Finally, MDN1 and PAXIP1 were prioritized as top candidates. Our findings demonstrate that DNV detection, including polygenic risk score analysis, is a powerful tool for identifying nsCL/P candidate genes, which can also be applied to other multifactorial congenital malformations.The present study was supported by the German Research Foundation (DFG)-Grants BE 3828/8-1, LU 1944/2-1, MA 2546/5-1, and LU1944/3-1

    Integrative Analysis of Metabolomic, Proteomic and Genomic Data to Reveal Functional Pathways and Candidate Genes for Drip Loss in Pigs

    No full text
    The aim of this study was to integrate multi omics data to characterize underlying functional pathways and candidate genes for drip loss in pigs. The consideration of different omics levels allows elucidating the black box of phenotype expression. Metabolite and protein profiling was applied in Musculus longissimus dorsi samples of 97 Duroc × Pietrain pigs. In total, 126 and 35 annotated metabolites and proteins were quantified, respectively. In addition, all animals were genotyped with the porcine 60 k Illumina beadchip. An enrichment analysis resulted in 10 pathways, amongst others, sphingolipid metabolism and glycolysis/gluconeogenesis, with significant influence on drip loss. Drip loss and 22 metabolic components were analyzed as intermediate phenotypes within a genome-wide association study (GWAS). We detected significantly associated genetic markers and candidate genes for drip loss and for most of the metabolic components. On chromosome 18, a region with promising candidate genes was identified based on SNPs associated with drip loss, the protein “phosphoglycerate mutase 2” and the metabolite glycine. We hypothesize that association studies based on intermediate phenotypes are able to provide comprehensive insights in the genetic variation of genes directly involved in the metabolism of performance traits. In this way, the analyses contribute to identify reliable candidate genes

    Different Statistical Approaches to Investigate Porcine Muscle Metabolome Profiles to Highlight New Biomarkers for Pork Quality Assessment.

    No full text
    The aim of this study was to elucidate the underlying biochemical processes to identify potential key molecules of meat quality traits drip loss, pH of meat 1 h post-mortem (pH1), pH in meat 24 h post-mortem (pH24) and meat color. An untargeted metabolomics approach detected the profiles of 393 annotated and 1,600 unknown metabolites in 97 Duroc × Pietrain pigs. Despite obvious differences regarding the statistical approaches, the four applied methods, namely correlation analysis, principal component analysis, weighted network analysis (WNA) and random forest regression (RFR), revealed mainly concordant results. Our findings lead to the conclusion that meat quality traits pH1, pH24 and color are strongly influenced by processes of post-mortem energy metabolism like glycolysis and pentose phosphate pathway, whereas drip loss is significantly associated with metabolites of lipid metabolism. In case of drip loss, RFR was the most suitable method to identify reliable biomarkers and to predict the phenotype based on metabolites. On the other hand, WNA provides the best parameters to investigate the metabolite interactions and to clarify the complex molecular background of meat quality traits. In summary, it was possible to attain findings on the interaction of meat quality traits and their underlying biochemical processes. The detected key metabolites might be better indicators of meat quality especially of drip loss than the measured phenotype itself and potentially might be used as bio indicators

    Integrative Analysis of Metabolomic, Proteomic and Genomic Data to Reveal Functional Pathways and Candidate Genes for Drip Loss in Pigs

    No full text
    The aim of this study was to integrate multi omics data to characterize underlying functional pathways and candidate genes for drip loss in pigs. The consideration of different omics levels allows elucidating the black box of phenotype expression. Metabolite and protein profiling was applied in Musculus longissimus dorsi samples of 97 Duroc × Pietrain pigs. In total, 126 and 35 annotated metabolites and proteins were quantified, respectively. In addition, all animals were genotyped with the porcine 60 k Illumina beadchip. An enrichment analysis resulted in 10 pathways, amongst others, sphingolipid metabolism and glycolysis/gluconeogenesis, with significant influence on drip loss. Drip loss and 22 metabolic components were analyzed as intermediate phenotypes within a genome-wide association study (GWAS). We detected significantly associated genetic markers and candidate genes for drip loss and for most of the metabolic components. On chromosome 18, a region with promising candidate genes was identified based on SNPs associated with drip loss, the protein “phosphoglycerate mutase 2” and the metabolite glycine. We hypothesize that association studies based on intermediate phenotypes are able to provide comprehensive insights in the genetic variation of genes directly involved in the metabolism of performance traits. In this way, the analyses contribute to identify reliable candidate genes

    Integrative Analysis of Metabolomic, Proteomic and Genomic Data to Reveal Functional Pathways and Candidate Genes for Drip Loss in Pigs

    No full text
    The aim of this study was to integrate multi omics data to characterize underlying functional pathways and candidate genes for drip loss in pigs. The consideration of different omics levels allows elucidating the black box of phenotype expression. Metabolite and protein profiling was applied in Musculus longissimus dorsi samples of 97 Duroc &times; Pietrain pigs. In total, 126 and 35 annotated metabolites and proteins were quantified, respectively. In addition, all animals were genotyped with the porcine 60 k Illumina beadchip. An enrichment analysis resulted in 10 pathways, amongst others, sphingolipid metabolism and glycolysis/gluconeogenesis, with significant influence on drip loss. Drip loss and 22 metabolic components were analyzed as intermediate phenotypes within a genome-wide association study (GWAS). We detected significantly associated genetic markers and candidate genes for drip loss and for most of the metabolic components. On chromosome 18, a region with promising candidate genes was identified based on SNPs associated with drip loss, the protein &quot;phosphoglycerate mutase 2&quot; and the metabolite glycine. We hypothesize that association studies based on intermediate phenotypes are able to provide comprehensive insights in the genetic variation of genes directly involved in the metabolism of performance traits. In this way, the analyses contribute to identify reliable candidate genes.</p

    Predictive power of principal component analysis, weighted network analysis and random forest regression in drip loss, pH1, pH24 and meat color based on a multiple regression model.

    No full text
    <p>Predictive power of principal component analysis, weighted network analysis and random forest regression in drip loss, pH1, pH24 and meat color based on a multiple regression model.</p

    Accuracy parameters and number of metabolites with significant variable importance (VI) and maximal VI per trait according to random forest regression.

    No full text
    <p>Accuracy parameters and number of metabolites with significant variable importance (VI) and maximal VI per trait according to random forest regression.</p

    Variable importance boxplot of important metabolites by random forest regression of Strobl et al. (2009) [29].

    No full text
    <p>Drip loss measured in <i>Musculus longissimus dorsi</i> (LD) 24 h post-mortem (p.m.); pH1 measured in LD 45 minutes p.m.; pH24 measured in LD 24 h p.m.; color = meat color measured in LD 24 h p.m.</p
    corecore