215 research outputs found
The effects of seasonal processes on size spectrum dynamics
The recent advent of dynamic size spectrum models has allowed the analysis of life processes in marine ecosystems to be carried out without the high complexity arising from interspecies interactions within dense food webs. In this paper, we use "mizer", a size spectrum modelling framework, to investigate the consequences of including the seasonal processes of plankton blooms and batch spawning in the model dynamics. A multispecies size spectrum model is constructed using 12 common North Sea fish species, with growth, predation, and mortality explicitly modelled, before simulating both seasonal plankton blooms and batch spawning of fish (using empirical data on the spawning patterns of each species). The effect of seasonality on the community size spectrum is investigated; it is found that with seasonal processes included, the species spectra are more varied over time, while the aggregated community spectrum remains fairly similar. Growth of seasonally spawning mature individuals drops significantly during peak reproduction, although lifetime growth curves follow nonseasonal ones closely. On analysing properties of the community spectrum under different fishing scenarios, seasonality generally causes more varied spectrum slopes and lower yields. Under seasonal conditions, increasing fishing effort also results in greater temporal variability of fisheries yields due to truncation of the community spectrum towards smaller sizes. Further work is needed to evaluate robustness of management strategies in the context of a wider range of seasonal processes and behavioural strategies, as well as longer term environmental variability and change
mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling
1. Size spectrum ecological models are representations of a community of individuals which grow and change trophic level. A key emergent feature of these models is the size spectrum; the total abundance of all individuals that scales negatively with size. The models we focus on are designed to capture fish community dynamics useful for assessing the community impacts of fishing. 2. We present mizer, an R package for implementing dynamic size spectrum ecological models of an entire aquatic community subject to fishing. Multiple fishing gears can be defined and fishing mortality can change through time making it possible to simulate a range of exploitation strategies and management options. 3. mizer implements three versions of the size spectrum modelling framework: the community model, where individuals are only characterized by their size; the trait-based model, where individuals are further characterized by their asymptotic size; and the multispecies model where additional trait differences are resolved. 4. A range of plot, community indicator and summary methods are available to inspect the results of the simulations
Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming
Resolving the combined effect of climate warming and exploitation in a food web context is key for predicting future biomass production, size-structure and potential yields of marine fishes. Previous studies based on mechanistic size-based food web models have found that bottom-up processes are important drivers of size-structure and fisheries yield in changing climates. However, we know less about the joint effects of 'bottom-up' and physiological effects of temperature; how do temperature effects propagate from individual-level physiology through food webs and alter the size-structure of exploited species in a community? Here, we assess how a species-resolved size-based food web is affected by warming through both these pathways and by exploitation. We parameterize a dynamic size spectrum food web model inspired by the offshore Baltic Sea food web, and investigate how individual growth rates, size-structure, and relative abundances of species and yields are affected by warming. The magnitude of warming is based on projections by the regional coupled model system RCA4-NEMO and the RCP 8.5 emission scenario, and we evaluate different scenarios of temperature dependence on fish physiology and resource productivity. When accounting for temperature-effects on physiology in addition to on basal productivity, projected size-at-age in 2050 increases on average for all fish species, mainly for young fish, compared to scenarios without warming. In contrast, size-at-age decreases when temperature affects resource dynamics only, and the decline is largest for young fish. Faster growth rates due to warming, however, do not always translate to larger yields, as lower resource carrying capacities with increasing temperature tend to result in decline in the abundance of larger fish and hence spawning stock biomass. These results suggest that to understand how global warming affects the size structure of fish communities, both direct metabolic effects and indirect effects of temperature via basal resources must be accounted for
Parameter uncertainty of a dynamic multispecies size spectrum model
Dynamic size spectrum models have been recognized as an effective way of describing how size-based interactions can give rise to the size structure of aquatic communities. They are intermediate-complexity ecological models that are solutions to partial differential equations driven by the size-dependent processes of predation, growth, mortality, and reproduction in a community of interacting species and sizes. To be useful for quantitative fisheries management these models need to be developed further in a formal statistical framework. Previous work has used time-averaged data to “calibrate” the model using optimization methods with the disadvantage of losing detailed time-series information. Using a published multispecies size spectrum model parameterized for the North Sea comprising 12 interacting fish species and a background resource, we fit the model to time-series data using a Bayesian framework for the first time. We capture the 1967–2010 period using annual estimates of fishing mortality rates as input to the model and time series of fisheries landings data to fit the model to output. We estimate 38 key parameters representing the carrying capacity of each species and background resource, as well as initial inputs of the dynamical system and errors on the model output. We then forecast the model forward to evaluate how uncertainty propagates through to population- and community-level indicators under alternative management strategies
Early warning signals of recovery in complex systems
Early warning signals (EWSs) offer the hope that patterns observed in data can predict the future states of ecological systems. While a large body of research identifies such signals prior to the collapse of populations, the prediction that such signals should also be present before a system's recovery has thus far been overlooked. We assess whether EWSs are present prior to the recovery of overexploited marine systems using a trait-based ecological model and analysis of real-world fisheries data. We show that both abundance and trait-based signals are independently detectable prior to the recovery of stocks, but that combining these two signals provides the best predictions of recovery. This work suggests that the efficacy of conservation interventions aimed at restoring systems which have collapsed may be predicted prior to the recovery of the system, with direct relevance for conservation planning and policy
Consumer-Resource Body-Size Relationships in Natural Food Webs
It has been suggested that differences in body size between consumer and resource species may have important implications for interaction strengths, population dynamics, and eventually food web structure, function, and evolution. Still, the general distribution of consumer–resource body-size ratios in real ecosystems, and whether they vary systematically among habitats or broad taxonomic groups, is poorly understood. Using a unique global database on consumer and resource body sizes, we show that the mean body-size ratios of aquatic herbivorous and detritivorous consumers are several orders of magnitude larger than those of carnivorous predators. Carnivorous predator–prey body-size ratios vary across different habitats and predator and prey types (invertebrates, ectotherm, and endotherm vertebrates). Predator–prey body-size ratios are on average significantly higher (1) in freshwater habitats than in marine or terrestrial habitats, (2) for vertebrate than for invertebrate predators, and (3) for invertebrate than for ectotherm vertebrate prey. If recent studies that relate body-size ratios to interaction strengths are general, our results suggest that mean consumer–resource interaction strengths may vary systematically across different habitat categories and consumer types
Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils
As Earth\u27s climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world
- …