240 research outputs found

    Constrained-Path Quantum Monte-Carlo Approach for Non-Yrast States Within the Shell Model

    Full text link
    The present paper intends to present an extension of the constrained-path quantum Monte-Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sdsd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction.Comment: 11 pages, 4 figure

    Photocatalytic oxidation mechanism of alkanes in contact with titanium dioxide

    Get PDF
    Isobutane was photooxidized on titanium dioxide between -16 and +180 C in tertiary butanol and acetone. The formation of tertiary butanol preceded the formation of acetone. Above 20 C the latter compound became clearly predominant. The reaction kinetics obeyed a steady state model of oxygen chemisorption with the involvement of isobutane in the physisorbed phase

    Variation in the thermionic work function of semiconductor powders exposed to electromagnetic radiation

    Get PDF
    The study of the variation of thermoelectronic work function potential of TiO2 in the presence of isobutane shows that this gas is not adsorbed on this solid, in either the presence or the absence of ultraviolet radiation. These results, as well as those obtained in a previous work, lead to the mechanism of the photo-oxidation of isobutane at room temperature, in which excited atomic oxygen is the active species

    Exotic spin, charge and pairing correlations of the two-dimensional doped Hubbard model: a symmetry entangled mean-field approach

    Full text link
    Intertwining of spin, charge and pairing correlations in the repulsive two-dimensional Hubbard model is shown through unrestricted variational calculations, with projected wavefunctions free of symmetry breaking. A crossover from incommensurate antiferromagnetism to stripe order naturally emerges in the hole-doped region when increasing the on-site coupling. Although effective pairing interactions are identified, they are strongly fragmented in several modes including d-wave pairing and more exotic channels related to an underlying stripe. We demonstrate that the entanglement of a mean-field wavefunction by symmetry restoration can largely account for interaction effects.Comment: Minor corrections, one reference adde

    Change in the thermionic work function of semiconductor powders exposed to electromagnetic radiation

    Get PDF
    The variations of the thermoelectronic work function of titanium dioxide, submitted to an ultraviolet or visible and infrared radiation, in the presence of oxygen, are studied by the vibrating condenser method. It is shown that during the ultraviolet irradiation, a desorption of a first species of oxygen simultaneously occurs with the adsorption of a second species of oxygen and that this phenomenon is found for any structure of TiO2 (anatase or rutile) any texture, oxygen pressure, radiation intensity, and nature of introduced dopes

    A constrained-path quantum Monte-Carlo approach for the nuclear shell model

    No full text
    International audienceA new QMC approach for the shell model yielding nearly exact spectroscopy of nuclei is presented. The originality of the formalism lies in the use of a variational symmetry-restored wave function to ‘steer’ the Brownian motion, and to control the sign/phase problem that generally makes the traditional QMC samplings totally ineffective by causing a prohibitive growth of the statistical errors. Tests of convergence and proof-of-principle results are reported

    Experimental control of natural perturbations in channel flow

    No full text
    International audienceA combined approach using system identification and feed-forward control design has been applied to experimental laminar channel flow in an effort to reduce the naturally occurring disturbance level. A simple blowing/suction strategy was capable of reducing the standard deviation of the measured sensor signal by 45 %, which markedly exceeds previously obtained results under comparable conditions. A comparable reduction could be verified over a significant streamwise extent, implying an improvement over previous, more localized disturbance control. The technique is effective, flexible, and robust, and the obtained results encourage further explorations of experimental control of convection-dominated flows

    Experimental control of natural perturbations in channel flow

    Get PDF
    A combined approach using system identification and feed-forward control design has been applied to experimental laminar channel flow in an effort to reduce the naturally occurring disturbance level. A simple blowing/suction strategy was capable of reducing the standard deviation of the measured sensor signal by 45 %, which markedly exceeds previously obtained results under comparable conditions. A comparable reduction could be verified over a significant streamwise extent, implying an improvement over previous, more localized disturbance control. The technique is effective, flexible, and robust, and the obtained results encourage further explorations of experimental control of convection-dominated flows

    Control of amplifier flows using subspace identification techniques

    No full text
    International audienceA realistic, efficient and robust technique for the control of amplifier flows has been investigated. Since this type of fluid system is extremely sensitive to upstream environmental noise, an accurate model capturing the influence of these perturbations is needed. A subspace identification algorithm is not only a convenient and effective way of constructing this model, it is also re a l is tic in the sense that it is based on input and output data measurements only and does not require other information from the detailed dynamics of the fluid system. This data-based control design has been tested on an amplifier model derived from the Ginzburg-Landau equation, and no significant loss of efficiency has been observed when using the identified instead of the exact model. Even though system identification leads to a realistic control design, other issues such as state estimation, have to be addressed to achieve full control efficiency. In particular, placing a sensor too far downstream is detrimental, since it does not provide an estimate of incoming perturbations. This has been made clear and quantitative by considering the relative estimation error and, more appropriately, the concept of a visibility length, a measure of how far upstream a sensor is able to accurately estimate the flow state. It has been demonstrated that a strongly convective system is characterized by a correspondingly small visibility length. In fact, in the latter case the optimal sensor placement has been found upstream of the actuators, and only this configuration was found to yield an efficient control performance. This upstream sensor placement suggests the use of a feed-forward approach for fluid systems with strong convection. Furthermore, treating upstream sensors as inputs in the identification procedure results in a very efficient and robust control. When validated on the Ginzburg-Landau model this technique is effective, and it is comparable to the optimal upper bound, given by full-state control, when the amplifier behaviour becomes convection-dominated. These concepts and findings have been extended and verified for flow over a backward-facing step at a Reynolds number Re = 350. Environmental noise has been introduced by three independent, localized sources. A very satisfactory control of the Kelvin-Helmholtz instability has been obtained with a one-order-of-magnitude reduction in the averaged perturbation norm. The above observations have been further confirmed by examining a low-order model problem that mimics a convection-dominated flow but allows the explicit computation of control-relevant measures such as observability. This study casts doubts on the usefulness of the asymptotic notion of observability for convection-dominated flows, since such flows are governed by transient effects. Finally, it is shown that the feed-forward approach is equivalent to an optimal linear-quadratic-Gaussian control for spy sensors placed sufficiently far upstream or for sufficiently convective flows. The control design procedure presented in this paper, consisting of data-based subspace identification and feed-forward control, was found to be effective and robust. Its implementation in a real physical experiment may confidently be carried out

    Information theory of open fragmenting systems

    Get PDF
    An information theory description of finite systems explicitly evolving in time is presented. We impose a MaxEnt variational principle on the Shannon entropy at a given time while the constraints are set at a former time. The resulting density matrix contains explicit time odd components in the form of collective flows. As a specific application we consider the dynamics of the expansion in connection with heavy ion experiments. Lattice gas and classical molecular dynamics simulations are shown. © 2007 American Institute of Physics.Fil:Ison, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dorso, C.O. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    • …
    corecore