99 research outputs found

    Consumers' Perception of the Cause-Related Marketing Effects of Bank’s Participation

    Get PDF
    Purpose: The main purpose of this study is to explore whether the Cause-Related Marketing effects of bank’s participation in public welfare activities will have a significant impact on consumers' purchase intentions. In this study, the consumer's perception of the marketing effect of good causes is tested by the experimental design method.   Theoretical framework: The "Cause-Related Marketing", which combines business objectives with social responsibility of, has become a global trend in recent years.   Design/methodology/approach: A questionnaire was distributed in front of the bank in the form of a questionnaire, and a total of 254 valid samples were obtained. After the test-taker read the DM advertising, they filled in the answer that best matches the question behind it.   Findings: According to the data analysis results, we discover that there are significant differences between genders in the marketing effect or purchase intentions of the good cause. In addition, the bank's donation magnitude shows a significant positive relationship with the effects on the cause-related marketing for consumers.   Research, practical and social implications: If a bank engages in public welfare activities, it will be more possible to attract consumers to have the interaction intention than the one which does not engage in public welfare activities.   Originality/value: This study manipulates two independent variables of whether banks engage in public welfare activities and donation magnitude, and establish four different experimental scenarios by designing good-related marketing direct mail (DM) advertising

    Design and Analysis of the Key Management Mechanism in Evolved Multimedia Broadcast/Multicast Service

    Get PDF
    3GPP introduced the key management mechanism (KMM) in evolved multimedia broadcast/multicast service (eMBMS) to provide forward security and backward security for multicast contents. In this paper, we point out that KMM may lead to frequent rekeying and re-authentication issues due to eMBMS's characteristics: 1) massive group members; 2) dynamic group topology; and 3) unexpected wireless disconnections. Such issues expose extra load for both user equipment (UE) terminals and mobile operators. It seems prolonging the rekeying interval is an intuitive solution to minimizing the impact of the issues. However, a long rekeying interval is not considered the best operational solution due to revenue loss of content providers. This paper quantifies the tradeoff between the load of the UEs and the operators as well as the revenue loss of the content providers. Moreover, we emphasize how essential this rekeying interval has impacts on the problems. Using our proposed tradeoff model, the operators can specify a suitable rekeying interval to best balance the interest between the above three parties. The tradeoff model is validated by extensive simulations and is demonstrated to be an effective approach for the tradeoff analysis and optimization on eMBMS

    Federated Learning for Sparse Principal Component Analysis

    Full text link
    In the rapidly evolving realm of machine learning, algorithm effectiveness often faces limitations due to data quality and availability. Traditional approaches grapple with data sharing due to legal and privacy concerns. The federated learning framework addresses this challenge. Federated learning is a decentralized approach where model training occurs on client sides, preserving privacy by keeping data localized. Instead of sending raw data to a central server, only model updates are exchanged, enhancing data security. We apply this framework to Sparse Principal Component Analysis (SPCA) in this work. SPCA aims to attain sparse component loadings while maximizing data variance for improved interpretability. Beside the L1 norm regularization term in conventional SPCA, we add a smoothing function to facilitate gradient-based optimization methods. Moreover, in order to improve computational efficiency, we introduce a least squares approximation to original SPCA. This enables analytic solutions on the optimization processes, leading to substantial computational improvements. Within the federated framework, we formulate SPCA as a consensus optimization problem, which can be solved using the Alternating Direction Method of Multipliers (ADMM). Our extensive experiments involve both IID and non-IID random features across various data owners. Results on synthetic and public datasets affirm the efficacy of our federated SPCA approach.Comment: 11 pages, 7 figures, 1 table. Accepted by IEEE BigData 2023, Sorrento, Ital

    Modulating Microglia/Macrophage Activation by CDNF Promotes Transplantation of Fetal Ventral Mesencephalic Graft Survival and Function in a Hemiparkinsonian Rat Model

    Get PDF
    Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta, which leads to the motor control deficits. Recently, cell transplantation is a cutting-edge technique for the therapy of PD. Nevertheless, one key bottleneck to realizing such potential is allogenic immune reaction of tissue grafts by recipients. Cerebral dopamine neurotrophic factor (CDNF) was shown to possess immune-modulatory properties that benefit neurodegenerative diseases. We hypothesized that co-administration of CDNF with fetal ventral mesencephalic (VM) tissue can improve the success of VM replacement therapies by attenuating immune responses. Hemiparkinsonian rats were generated by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats, with/without CDNF administration. Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and smallanimal positron emission tomography (PET) coupled with [F-18] DOPA or [F-18] FE-PE2I, respectively. In addition, transplantation-related inflammatory response was determined by uptake of [F-18] FEPPA in the grafted side of striatum. Immunohistochemistry (IHC) examination was used to determine the survival of the grated dopaminergic neurons in the striatum and to investigate immune-modulatory effects of CDNF. The modulation of inflammatory responses caused by CDNF might involve enhancing M2 subset polarization and increasing fractal dimensions of 6-OHDA-treated BV2 microglial cell line. Analysis of CDNF-induced changes to gene expressions of 6-OHDA-stimulated BV2 cells implies that these alternations of the biomarkers and microglial morphology are implicated in the upregulation of protein kinase B signaling as well as regulation of catalytic, transferase, and protein serine/threonine kinase activity. The effects of CDNF on 6-OHDA-induced alternation of the canonical pathway in BV2 microglial cells is highly associated with PI3K-mediated phagosome formation. Our results are the first to show that CDNF administration enhances the survival of the grafted dopaminergic neurons and improves functional recovery in PD animal model. Modulation of the polarization, morphological characteristics, and transcriptional profiles of 6-OHDA-stimualted microglia by CDNF may possess these properties in transplantation-based regenerative therapies.Peer reviewe

    Modulating Microglia/Macrophage Activation by CDNF Promotes Transplantation of Fetal Ventral Mesencephalic Graft Survival and Function in a Hemiparkinsonian Rat Model

    Get PDF
    Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta, which leads to the motor control deficits. Recently, cell transplantation is a cutting-edge technique for the therapy of PD. Nevertheless, one key bottleneck to realizing such potential is allogenic immune reaction of tissue grafts by recipients. Cerebral dopamine neurotrophic factor (CDNF) was shown to possess immune-modulatory properties that benefit neurodegenerative diseases. We hypothesized that co-administration of CDNF with fetal ventral mesencephalic (VM) tissue can improve the success of VM replacement therapies by attenuating immune responses. Hemiparkinsonian rats were generated by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats, with/without CDNF administration. Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small-animal positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. In addition, transplantation-related inflammatory response was determined by uptake of [18F] FEPPA in the grafted side of striatum. Immunohistochemistry (IHC) examination was used to determine the survival of the grated dopaminergic neurons in the striatum and to investigate immune-modulatory effects of CDNF. The modulation of inflammatory responses caused by CDNF might involve enhancing M2 subset polarization and increasing fractal dimensions of 6-OHDA-treated BV2 microglial cell line. Analysis of CDNF-induced changes to gene expressions of 6-OHDA-stimulated BV2 cells implies that these alternations of the biomarkers and microglial morphology are implicated in the upregulation of protein kinase B signaling as well as regulation of catalytic, transferase, and protein serine/threonine kinase activity. The effects of CDNF on 6-OHDA-induced alternation of the canonical pathway in BV2 microglial cells is highly associated with PI3K-mediated phagosome formation. Our results are the first to show that CDNF administration enhances the survival of the grafted dopaminergic neurons and improves functional recovery in PD animal model. Modulation of the polarization, morphological characteristics, and transcriptional profiles of 6-OHDA-stimualted microglia by CDNF may possess these properties in transplantation-based regenerative therapies

    Augmenting hematoma-scavenging capacity of innate immune cells by CDNF reduces brain injury and promotes functional recovery after intracerebral hemorrhage

    Get PDF
    During intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH. Here, we show that intracerebroventricular administration of recombinant human cerebral dopamine neurotrophic factor (rhCDNF) accelerates hemorrhagic lesion resolution, reduces peri-focal edema, and improves neurological outcomes in an animal model of collagenase-induced ICH. We demonstrate that CDNF acts on microglia/macrophages in the hemorrhagic striatum by promoting scavenger receptor expression, enhancing erythrophagocytosis and increasing anti-inflammatory mediators while suppressing the production of pro-inflammatory cytokines. Administration of rhCDNF results in upregulation of the Nrf2-HO-1 pathway, but alleviation of oxidative stress and unfolded protein responses in the perihematomal area. Finally, we demonstrate that intravenous delivery of rhCDNF has beneficial effects in an animal model of ICH and that systemic application promotes scavenging by the brain's myeloid cells for the treatment of ICH.Peer reviewe

    Terpenoids from the Octocorals Menella sp. (Plexauridae) and Lobophytum crassum (Alcyonacea)

    Get PDF
    A new germacrane-type sesquiterpenoid, menelloide E (1), and a new cembrane-type diterpenoid, lobocrassin F (2), were isolated from the octocorals Menella sp. and Lobophytum crassum, respectively. The structures of terpenoids 1 and 2 were determined by spectroscopic and chemical methods and compound 2 was found to display a significant inhibitory effect on the release of elastase by human neutrophils

    Gene Transfer of Pro-opiomelanocortin Prohormone Suppressed the Growth and Metastasis of Melanoma: Involvement of ␣-Melanocyte-Stimulating Hormone-Mediated Inhibition of the Nuclear Factor B/Cyclooxygenase-2 Pathway

    Get PDF
    ABSTRACT Pro-opiomelanocortin (POMC) is a prohormone of various neuropeptides, including corticotropin, ␣-melanocyte-stimulating hormone (␣-MSH), and ␤-endorphin (␤-EP) . POMC neuropeptides are potent inflammation inhibitors and immunosuppressants and may exert opposite influences during tumorigenesis. However, the role of POMC expression in carcinogenesis remains elusive. We evaluated the antineoplastic potential of POMC gene delivery in a syngenic B16-F10 melanoma model. Adenovirus-mediated POMC gene delivery in B16-F10 cells increased the release of POMC neuropeptides in cultured media, which differentially regulated the secretion of pro-and anti-inflammatory cytokines in lymphocytes. POMC gene transfer significantly reduced the anchorage-independent growth of melanoma cells. Moreover, pre-or post-treatment with POMC gene delivery effectively retarded the melanoma growth in mice. Intravenous injection of POMC-transduced B16-F10 cells resulted in reduced foci formation in lung by 60 to 70% of control. The reduced metastasis of POMC-transduced B16-F10 cells could be attributed to their attenuated migratory and adhesive capabilities. POMC gene delivery reduced the cyclooxygenase-2 (COX-2) expression and prostaglandin (PG) E 2 synthesis in melanoma cells and tumor tissues. In addition, application of NS-398, a selective COX-2 inhibitor, mimicked the antineoplastic functions of POMC gene transfer in melanoma. The POMC-mediated COX-2 down-regulation was correlated with its inhibition of nuclear factor B (NFB) activities. Exogenous supply of ␣-MSH inhibited NFB activities, whereas application of the ␣-MSH antagonist growth hormone-releasing peptide-6 (GHRP-6) abolished the POMC-induced inhibition of NFB activities and melanoma growth in mice. In summary, POMC gene delivery suppresses melanoma via ␣-MSH-induced inhibition of NFB/COX-2 pathway, thereby constituting a novel therapy for melanoma. POMC is a multifunctional polycistronic gene located on human chromosome 2p23.3. POMC is a 31 kDa prohormone that is processed into various neuropeptides, including corticotropin, melanotropins (␣-, ␤-, and ␥-MSH), lipotropins, and ␤-endorphin (␤-EP

    The Role of Age in Predicting the Outcome of Caustic Ingestion in Adults: A Retrospective Analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the outcomes of caustic ingestion differ between children and adults, it is unclear whether such outcomes differ among adults as a function of their age. This retrospective study was performed to ascertain whether the clinical outcomes of caustic ingestion differ significantly between elderly and non-elderly adults.</p> <p>Methods</p> <p>Medical records of patients hospitalized for caustic ingestion between June 1999 and July 2009 were reviewed retrospectively. Three hundred eighty nine patients between the ages of 17 and 107 years were divided into two groups: non-elderly (< 65 years) and elderly (≥ 65 years). Mucosal damage was graded using esophagogastroduodenoscopy (EGD). Parameters examined in this study included gender, intent of ingestion, substance ingested, systemic and gastrointestinal complications, psychological and systemic comorbidities, severity of mucosal injury, and time to expiration.</p> <p>Results</p> <p>The incidence of psychological comorbidities was higher for the non-elderly group. By contrast, the incidence of systemic comorbidities, the grade of severity of mucosal damage, and the incidence of systemic complications were higher for the elderly group. The percentages of ICU admissions and deaths in the ICU were higher and the cumulative survival rate was lower for the elderly group. Elderly subjects, those with systemic complications had the greatest mortality risk due to caustic ingestion.</p> <p>Conclusions</p> <p>Caustic ingestion by subjects ≥65 years of age is associated with poorer clinical outcomes as compared to subjects < 65 years of age; elderly subjects with systemic complications have the poorest clinical outcomes. The severity of gastrointestinal tract injury appears to have no impact on the survival of elderly subjects.</p
    corecore