66 research outputs found
The interactome of the prostate-specific protein Anoctamin 7
BACKGROUND: Elevated Anoctamin 7 (ANO7) expression is associated with poor survival in prostate cancer patients.OBJECTIVE: The aim was to discover proteins that interact with ANO7 to understand its functions and regulatory mechanisms.METHODS: The proximity-dependent biotin identification (BioID) method was utilized. ANO7 fused to biotin ligase was transiently transfected into LNCaP cells, and the biotinylated proteins were collected and analysed by mass spectrometry. Four identified proteins were stained with dual fluorescent immunostaining and visualized using Stimulated emission depletion microscopy (STED).RESULTS: After bioinformatic filtering steps, 64 potentially ANO7-interacting proteins were identified and analysed with the GO enrichment analysis tool. One of the most prominently enriched cellular components was cellular vesicle. Co-localization was showed for staphylococcal nuclease and tudor domain containing 1 (SND1), heat shock protein family A (Hsp70) member 1A (HSPA1A), adaptor related protein complex 2 subunit beta 1 (AP2B1) and coatomer protein complex subunit gamma 2 (COPG2).CONCLUSIONS: This is the first study in which ANO7 interacting proteins have been identified. Although further studies are needed, the findings reported here expand our understanding of the role and regulation of ANO7 in prostate cancer cells. Furthermore, these results are likely to introduce new targets for the novel cancer therapies
A novel double nucleotide variant in the ferritin-L iron-responsive element in a Finnish patient with hereditary hyperferritinaemia-cataract syndrome
ABSTRACT.Purpose: To present a novel Finnish double nucleotide variant in the ironresponsiveelement (IRE) of the ferritin L-chain gene (FTL) leading tohyperferritinaemia-cataract syndrome (HHCS).PurposeTo present a novel Finnish double nucleotide variant in the iron-responsive element (IRE) of the ferritin L-chain gene (FTL) leading to hyperferritinaemia-cataract syndrome (HHCS).MethodsGenomic DNA extracted from peripheral blood leucocytes and synthetized with three different primers flanking the IRE in the FTL 5′-untranslated region of the FTL was used in polymerase chain reaction (PCR). Thereafter, Sanger sequencing was performed on the 487-bp and 602-bp PCR amplification products with specific primers to reveal FTL IRE mutations.ResultsA 58-year-old female patient with elevated serum ferritin level (1339 μg/l) was diagnosed with HHCS after extensive workup. Genetic testing identified a novel double point mutation g.48965355G>C (chr19, hg19) and g.48965356G>T (chr19, hg19) in the lower stem region of the IRE canonical structure of the FTL.ConclusionAfter excluding other causes, elevated serum ferritin level in a person with early onset cataract is indicative for HHCS, a genetic disorder caused by mutation in the IRE of the FTL.</p
Aging and serum exomiR content in women-effects of estrogenic hormone replacement therapy
Exosomes participate in intercellular messaging by transporting bioactive lipid-, protein-and RNA-molecules and -complexes. The contents of the exosomes reflect the physiological status of an individual making exosomes promising targets for biomarker analyses. In the present study we extracted exosome microRNAs (exomiRs) from serum samples of premenopausal women (n = 8) and monozygotic postmenopausal twins (n = 10 female pairs), discordant for the use of estrogenic hormone replacement therapy (HRT), in order to see whether the age or/and the use of HRT associates with exomiR content. A total of 241 exomiRs were detected by next generation sequencing, 10 showing age, 14 HRT and 10 age + HRT-related differences. When comparing the groups, differentially expressed miRs were predicted to affect cell proliferation processes showing inactivation with younger age and HRT usage. MiR-106-5p, -148a-3p, -27-3p, -126-5p, -28-3p and -30a-5p were significantly associated with serum 17 beta-estradiol. MiRs formed two hierarchical clusters being indicative of positive or negative health outcomes involving associations with body composition, serum 17 beta-estradiol, fat-, glucose-and inflammatory markers. Circulating exomiR clusters, obtained by NGS, could be used as indicators of metabolic and inflammatory status affected by hormonal changes at menopause. Furthermore, the individual effects of HRT-usage could be evaluated based on the serum exomiR signature.Peer reviewe
Urine microRNA Profiling Displays miR-125a Dysregulation in Children with Fragile X Syndrome
A triplet repeat expansion leading to transcriptional silencing of the FMR1 gene results in fragile X syndrome (FXS), which is a common cause of inherited intellectual disability and autism. Phenotypic variation requires personalized treatment approaches and hampers clinical trials in FXS. We searched for microRNA (miRNA) biomarkers for FXS using deep sequencing of urine and identified 28 differentially regulated miRNAs when 219 reliably identified miRNAs were compared in dizygotic twin boys who shared the same environment, but one had an FXS full mutation, and the other carried a premutation allele. The largest increase was found in miR-125a in the FXS sample, and the miR-125a levels were increased in two independent sets of urine samples from a total of 19 FXS children. Urine miR-125a levels appeared to increase with age in control subjects, but varied widely in FXS subjects. Should the results be generalized, it could suggest that two FXS subgroups existed. Predicted gene targets of the differentially regulated miRNAs are involved in molecular pathways that regulate developmental processes, homeostasis, and neuronal function. Regulation of miR-125a has been associated with type I metabotropic glutamate receptor signaling (mGluR), which has been explored as a treatment target for FXS, reinforcing the possibility that urine miR-125a may provide a novel biomarker for FXS
Urine microRNA Profiling Displays miR-125a Dysregulation in Children with Fragile X Syndrome
A triplet repeat expansion leading to transcriptional silencing of the FMR1 gene results in fragile X syndrome (FXS), which is a common cause of inherited intellectual disability and autism. Phenotypic variation requires personalized treatment approaches and hampers clinical trials in FXS. We searched for microRNA (miRNA) biomarkers for FXS using deep sequencing of urine and identified 28 differentially regulated miRNAs when 219 reliably identified miRNAs were compared in dizygotic twin boys who shared the same environment, but one had an FXS full mutation, and the other carried a premutation allele. The largest increase was found in miR-125a in the FXS sample, and the miR-125a levels were increased in two independent sets of urine samples from a total of 19 FXS children. Urine miR-125a levels appeared to increase with age in control subjects, but varied widely in FXS subjects. Should the results be generalized, it could suggest that two FXS subgroups existed. Predicted gene targets of the differentially regulated miRNAs are involved in molecular pathways that regulate developmental processes, homeostasis, and neuronal function. Regulation of miR-125a has been associated with type I metabotropic glutamate receptor signaling (mGluR), which has been explored as a treatment target for FXS, reinforcing the possibility that urine miR-125a may provide a novel biomarker for FXS
Genome Sequences of RIGVIR Oncolytic Virotherapy Virus and Five Other Echovirus 7 Isolates
We report here the nearly complete Illumina-sequenced consensus genome sequences of six isolates of echovirus 7 (E7), including oncolytic virotherapy virus RIGVIR and the Wallace prototype. Amino acid identities within the coding region were highly conserved across all isolates, ranging from 95.31% to 99.73%.Peer reviewe
Signature of circulating small non-coding RNAs during early fracture healing in mice
Fracture healing is a complex process with multiple overlapping metabolic and differentiation phases. Small non-coding RNAs are involved in the regulation of fracture healing and their presence in circulation is under current interest due to their obvious value as potential biomarkers. Circulating microRNAs (miRNAs) have been characterized to some extent but the current knowledge on tRNA-derived small RNA fragments (tsRNAs) is relatively scarce, especially in circulation.In this study, the spectrum of circulating miRNAs and tsRNAs was analysed by next generation sequencing to show their differential expression during fracture healing in vivo. Analysed tsRNA fragments included stress-induced translation interfering tRNA fragments (tiRNAs or tRNA halves) and internal tRNA fragments (i-tRF), within the size range of 28–36 bp. To unveil the expression of these non-coding RNAs, genome-wide analysis was performed on two months old C57BL/6 mice on days 1, 5, 7, 10, and 14 (D1, D5, D7, D10, and D14) after a closed tibial fracture.Valine isoacceptor tRNA-derived Val-AAC 5′end and Val-CAC 5′end fragments were the major types of 5′end tiRNAs in circulation, comprising about 65 % of the total counts. Their expression was not affected by fracture. After a fracture, the levels of two 5′end tiRNAs Lys-TTT 5′ and Lys-CTT 5′ were decreased and His-GTG 5′ was increased through D1-D14. The level of miR-451a was decreased on the first post-fracture day (D1), whereas miR-328-3p, miR-133a-3p, miR-375-3p, miR-423-5p, and miR-150-5p were increased post-fracture. These data provide evidence on how fracture healing could provoke systemic metabolic effects and further pinpoint the potential of small non-coding RNAs as biomarkers for tissue regeneration.</p
Genome sequences of RIGVIR oncolytic virotherapy virus and five other echovirus 7 isolates
We report here the nearly complete Illumina-sequenced consensus genome sequences of six isolates of echovirus 7 (E7), including oncolytic virotherapy virus RIGVIR and the Wallace prototype. Amino acid identities within the coding region were highly conserved across all isolates, ranging from 95.31% to 99.73%.</p
Urine microRNA Profiling Displays miR-125a Dysregulation in Children with Fragile X Syndrome
A triplet repeat expansion leading to transcriptional silencing of the FMR1 gene results in fragile X syndrome (FXS), which is a common cause of inherited intellectual disability and autism. Phenotypic variation requires personalized treatment approaches and hampers clinical trials in FXS. We searched for microRNA (miRNA) biomarkers for FXS using deep sequencing of urine and identified 28 differentially regulated miRNAs when 219 reliably identified miRNAs were compared in dizygotic twin boys who shared the same environment, but one had an FXS full mutation, and the other carried a premutation allele. The largest increase was found in miR-125a in the FXS sample, and the miR-125a levels were increased in two independent sets of urine samples from a total of 19 FXS children. Urine miR-125a levels appeared to increase with age in control subjects, but varied widely in FXS subjects. Should the results be generalized, it could suggest that two FXS subgroups existed. Predicted gene targets of the differentially regulated miRNAs are involved in molecular pathways that regulate developmental processes, homeostasis, and neuronal function. Regulation of miR-125a has been associated with type I metabotropic glutamate receptor signaling (mGluR), which has been explored as a treatment target for FXS, reinforcing the possibility that urine miR-125a may provide a novel biomarker for FXS
- …