73 research outputs found

    Evidence for fresh frost layer on the bare nucleus of comet Hale--Bopp at 32 AU distance

    Get PDF
    Here we report that the activity of comet Hale--Bopp ceased between late 2007 and March, 2009, at about 28 AU distance from the Sun. At that time the comet resided at a distance from the Sun that exceeded the freeze-out distance of regular comets by an order of magnitude. A Herschel Space Observatory PACS scan was taken in mid-2010, in the already inactive state of the nucleus. The albedo has been found to be surprisingly large (8.1±\pm0.9%{}), which exceeds the value known for any other comets. With re-reduction of archive HST images from 1995 and 1996, we confirm that the pre-perihelion albedo resembled that of an ordinary comet, and was smaller by a factor of two than the post-activity albedo. Our further observations with the Very Large Telescope (VLT) also confirmed that the albedo increased significantly by the end of the activity. We explain these observations by proposing gravitational redeposition of icy grains towards the end of the activity. This is plausible for such a massive body in a cold environment, where gas velocity is lowered to the range of the escape velocity. These observations also show that giant comets are not just the upscaled versions of the comets we know but can be affected by processes that are yet to be fully identified.Comment: 7 pages, 6 figures, accepted for publication in Ap

    R. F. Arnold Madáchról

    Get PDF

    ALMA observations of the molecular gas in the debris disk of the 30 Myr old star HD 21997

    Get PDF
    The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here we report on the detection of 12CO and 13CO in the J=2-1 and J=3-2 transitions and C18O in the J=2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r_in < 26 AU, r_out = 138 +/- 20 AU, M_*=1.8 +0.5 -0.2 M_Sun, and i = 32.6 +/- 3.1 degrees. The total CO mass, as calculated from the optically thin C18O line, is about (4-8) x 10^-2 M_Earth, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from the ALMA continuum observations by Mo\'or et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not co-located, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not co-located. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.Comment: 8 pages, 4 figures, accepted for publication in Ap

    Discovery of molecular gas around HD 131835 in an APEX molecular line survey of bright debris disks

    Get PDF
    Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10-40 Myr old systems. We used the APEX and IRAM 30m radiotelescopes to search for CO gas in 20 bright debris disks. In one case, around the 16 Myr old A-type star HD 131835, we discovered a new gas-bearing debris disk, where the CO 3-2 transition was successfully detected. No other individual system exhibited a measurable CO signal. Our Herschel Space Observatory far-infrared images of HD 131835 marginally resolved the disk both at 70 and 100μ\mum, with a characteristic radius of ~170 au. While in stellar properties HD 131835 resembles β\beta Pic, its dust disk properties are similar to those of the most massive young debris disks. With the detection of gas in HD 131835 the number of known debris disks with CO content has increased to four, all of them encircling young (\leq40 Myr) A-type stars. Based on statistics within 125 pc, we suggest that the presence of detectable amount of gas in the most massive debris disks around young A-type stars is a common phenomenon. Our current data cannot conclude on the origin of gas in HD 131835. If the gas is secondary, arising from the disruption of planetesimals, then HD 131835 is a comparably young and in terms of its disk more massive analogue of the β\beta Pic system. However, it is also possible that this system similarly to HD 21997 possesses a hybrid disk, where the gas material is predominantly primordial, while the dust grains are mostly derived from planetesimals.Comment: Accepted for publication in ApJ, 18 pages, 9 figures, 5 table

    Effects of Temperature–Climate Patterns on the Production of Some Competitive Species on Grounds of Modelling

    Get PDF
    Climate change has serious effects on the setting up and the operation of natural ecosystems. Small increase in temperature could cause rise in the amount of some species or potential disappearance of others. During our researches, the dispersion of the species and biomass production of a theoretical ecosystem were examined on the effect of the temperature–climate change. The answers of the ecosystems which are given to the climate change could be described by means of global climate modelling and dynamic vegetation models. The examination of the operation of the ecosystems is only possible in huge centres on supercomputers because of the number and the complexity of the calculation. The number of the calculation could be decreased to the level of a PC by considering the temperature and the reproduction during modelling a theoretical ecosystem, and several important theoretical questions could be answered

    Stirring in massive, young debris discs from spatially resolved Herschel images

    Get PDF
    A significant fraction of main-sequence stars are encircled by dusty debris discs, where the short-lived dust particles are replenished through collisions between planetesimals. Most destructive collisions occur when the orbits of smaller bodies are dynamically stirred up, either by the gravitational effect of locally formed Pluto-sized planetesimals (self-stirring scenario), or via secular perturbation caused by an inner giant planet (planetary stirring). The relative importance of these scenarios in debris systems is unknown. Here we present new Herschel Space Observatory imagery of 11 discs selected from the most massive and extended known debris systems. All discs were found to be extended at far-infrared wavelengths, five of them being resolved for the first time. We evaluated the feasibility of the self-stirring scenario by comparing the measured disc sizes with the predictions of the model calculated for the ages of our targets. We concluded that the self-stirring explanation works for seven discs. However, in four cases, the predicted pace of outward propagation of the stirring front, assuming reasonable initial disc masses, was far too low to explain the radial extent of the cold dust. Therefore, for HD 9672, HD 16743, HD 21997, and HD 95086, another explanation is needed. We performed a similar analysis for {\ss} Pic and HR 8799, reaching the same conclusion. We argue that planetary stirring is a promising possibility to explain the disk properties in these systems. In HR 8799 and HD 95086 we may already know the potential perturber, since their known outer giant planets could be responsible for the stirring process. Our study demonstrates that among the largest and most massive debris discs self-stirring may not be the only active scenario, and potentially planetary stirring is responsible for destructive collisions and debris dust production in a number of systems.Comment: Accepted for publication in MNRAS, 22 pages, 7 figures, 6 tables (abstract abridged due to arXiv requirements

    ALMA CONTINUUM OBSERVATIONS OF A 30 Myr OLD GASEOUS DEBRIS DISK AROUND HD 21997

    Get PDF
    Circumstellar disks around stars older than 10 Myr are expected to be gas-poor. There are, however, two examples of old (30-40 Myr) debris-like disks containing a detectable amount of cold CO gas. Here we present ALMA and Herschel Space Observatory observations of one of these disks, around HD 21997, and study the distribution and origin of the dust and its connection to the gas. Our ALMA continuum images at 886um clearly resolve a broad ring of emission within a diameter of ~4.5 arcsec, adding HD 21997 to the dozen debris disks resolved at (sub)millimeter wavelengths. Modeling the morphology of the ALMA image with a radiative transfer code suggests inner and outer radii of ~55 and ~150 AU, and a dust mass of 0.09 M_Earth. Our data and modeling hints at an extended cold outskirt of the ring. Comparison with the morphology of the CO gas in the disk reveals an inner dust-free hole where gas nevertheless can be detected. Based on dust grain lifetimes, we propose that the dust content of this gaseous disk is of secondary origin produced by planetesimals. Since the gas component is probably primordial, HD 21997 is one of the first known examples of a hybrid circumstellar disk, a so-far little studied late phase of circumstellar disk evolution
    corecore