126 research outputs found
Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces: Surfactant Mixtures
The adsorption at the interface between an aqueous solution of several
surface-active agents and another fluid (air or oil) phase is addressed
theoretically. We derive the kinetic equations from a variation of the
interfacial free energy, solve them numerically and provide an analytic
solution for the simple case of a linear adsorption isotherm. Calculating
asymptotic solutions analytically, we find the characteristic time scales of
the adsorption process and observe the behavior of the system at various
temporal stages. In particular, we relate the kinetic behavior of the mixture
to the properties of its individual constituents and find good agreement with
experiments. In the case of kinetically limited adsorption, the mixture
kinetics is found to be considerably different from that of the
single-surfactant solutions because of strong coupling between the species.Comment: 19 pages, 7 figures, to be published in Langmui
A provisional database for the silicon content of foods in the United Kingdom
Si may play an important role in bone formation and connective tissue metabolism. Although biological interest in this element has recently increased, limited literature exists on the Si content of foods. To further our knowledge and understanding of the relationship between dietary Si and human health, a reliable food composition database, relevant for the UK population, is required. A total of 207 foods and beverages, commonly consumed in the UK, were analysed for Si content. Composite samples were analysed using inductively coupled plasma–optical emission spectrometry following microwave-assisted digestion with nitric acid and H2O2. The highest concentrations of Si were found in cereals and cereal products, especially less refined cereals and oat-based products. Fruit and vegetables were highly variable sources of Si with substantial amounts present in Kenyan beans, French beans, runner beans, spinach, dried fruit, bananas and red lentils, but undetectable amounts in tomatoes, oranges and onions. Of the beverages, beer, a macerated whole-grain cereal product, contained the greatest level of Si, whilst drinking water was a variable source with some mineral waters relatively high in Si. The present study provides a provisional database for the Si content of UK foods, which will allow the estimation of dietary intakes of Si in the UK population and investigation into the role of dietary Si in human health.<br /
Recommended from our members
Collagen scaffolds as a tool for understanding the biological effect of silicates
Dietary silicon is essential in the maintenance of bone and cartilage. However, the mechanism by which silicon, in the form of silicates, triggers a biological response has never been uncovered. Here we demonstrate the incorporation of orthosilicic acid (Si(OH)4), the form of silicon in the body, within collagen scaffolds for use as an in vitro platform to identify key genes affected by silicates. Ice-templated collagen–silicate scaffolds, containing 0.21 wt% silicon, were validated by examining the mRNA levels for an array of genes in human osteoblasts and mesenchymal stromal cells (MSC) after 48 h in culture. Several novel genes, such as tumor necrosis factor alpha (TNF), were identified as having potential links to orthosilicic acid, verifying that collagen–silicate scaffolds are a versatile platform for identifying novel mechanisms in which silicates regulate musculoskeletal tissue.The authors gratefully acknowledge the financial support of the Gates Cambridge Trust , ERC Advanced Grant 320598 3D-E and from the National Institute for Health Research. RJ is supported by the Medical Research Council (Grant number MC_US_A090_0008/Unit Programme number U1059).This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0167577X15300203#
Positive association between serum silicon levels and bone mineral density in female rats following oral silicon supplementation with monomethylsilanetriol.
UNLABELLED: Observational (epidemiological) studies suggest the positive association between dietary silicon intake and bone mineral density may be mediated by circulating estradiol level. Here, we report the results of a silicon supplementation study in rats that strongly support these observations and suggest an interaction between silicon and estradiol. INTRODUCTION: Epidemiological studies report strong positive associations between dietary silicon (Si) intake and bone mineral density (BMD) in premenopausal women and indicate that the association may be mediated by estradiol. We have tested this possibility in a mixed-gender rodent intervention study. METHODS: Tissue samples were obtained from three groups of 20-week-old Sprague Dawley rats (five males and five females per group) that had been supplemented ad libitum for 90 days in their drinking water with (i) <0.1 mg Si/L (vehicle control), (ii) 115 mg Si/L (moderate dose) or (iii) 575 mg Si/L (high dose). All rats received conventional laboratory feed, whilst supplemental Si was in the form of monomethylsilanetriol, increasing dietary Si intakes by 18 and 99 %, for the moderate- and high-dose groups, respectively. RESULTS: Fasting serum and tissue Si concentrations were increased with Si supplementation (p < 0.05), regardless of gender. However, only for female rats was there (i) a trend for a dose-responsive increase in serum osteocalcin concentration with Si intervention and (ii) strong significant associations between serum Si concentrations and measures of bone quality (p < 0.01). Correlations were weaker or insignificant for tibia Si levels and absent for other serum or tibia elemental concentrations and bone quality measures. CONCLUSIONS: Our findings support the epidemiological observations that dietary Si positively impacts BMD in younger females, and this may be due to a Si-estradiol interaction. Moreover, these data suggest that the Si effect is mediated systemically, rather than through its incorporation into bone
Dietary intake in post-menopausal women
Si has been suggested as an essential element, and may be important in optimal bone, skin and cardiovascular health. However, there are few estimates of dietary Si intakes in man, especially in a UK population. Following the development of a UK food composition database for Si, the aim of the present study was to investigate dietary intakes of Si amongst healthy women aged over 60 years and to identify important food sources of Si in their diet. Healthy, post-menopausal female subjects (>60 years of age; n 209) were recruited from the general population around Dundee, Scotland as part of an unrelated randomised controlled intervention study where dietary intake was assessed using a self-administered, semi-quantitative food-frequency questionnaire at five time-points over a 2-year period. Food composition data on the Si content of UK foods was used to determine the Si content of food items on the food-frequency questionnaire. Mean Si intake was 18·6 (sd 4·6) mg and did not vary significantly across the 2 years of investigation. Cereals provided the greatest amount of Si in the diet (about 30%), followed by fruit, beverages (hot, cold and alcoholic beverages combined) and vegetables; together these foods provided over 75% about Si intake. Si intakes in the UK appear consistent with those reported previously for elderly women in Western populations, but lower than those reported for younger women or for men.<br /
Bone mineral health is sensitively related to environmental cadmium exposure- experimental and human data
Exposure to cadmium (Cd) is recognised as one of the risk factors for osteoporosis, although critical exposure levels and exact mechanisms are still unknown.
Here, we first confirmed that in male Wistar rats challenged orally with 6 different levels of Cd (0.3–10 mg/kg b.w.), over 28 days, there was a direct dose relationship to bone Cd concentration. Moreover, bone mineral content was significantly diminished by ∼15% (p < 0.0001) plateauing already at the lowest exposure level. For the other essential bone elements zinc (Zn) loss was most marked. Having established the sensitive metrics (measures of Cd exposure), we then applied them to 20 randomly selected human femoral head bone samples from 16 independent subjects. Bone Cd concentration was inversely proportional to trabecular bone mineral density and mineral (calcium) content and Zn content of bone, but not the donor's age.
Our findings, through direct bone analyses, support the emerging epidemiological view that bone health, adjudged by mineral density, is extremely sensitive to even background levels of environmental Cd. Importantly, however, our data also suggest that Cd may play an even greater role in compromised bone health than prior indirect estimates of exposure could reveal. Environmental Cd may be a substantially determining factor in osteoporosis and large cohort studies with direct bone analyses are now merited
Choline-stabilized orthosilicic acid supplementation as an adjunct to calcium/vitamin D3 stimulates markers of bone formation in osteopenic females: a randomized, placebo-controlled trial.
BACKGROUND: Mounting evidence supports a physiological role for silicon (Si) as orthosilicic acid (OSA, Si(OH)4) in bone formation. The effect of oral choline-stabilized orthosilicic acid (ch-OSA) on markers of bone turnover and bone mineral density (BMD) was investigated in a double-blind placebo-controlled trial. METHODS: Over 12-months, 136 women out of 184 randomized (T-score spine < -1.5) completed the study and received, daily, 1000 mg Ca and 20 microg cholecalciferol (Vit D3) and three different ch-OSA doses (3, 6 and 12 mg Si) or placebo. Bone formation markers in serum and urinary resorption markers were measured at baseline, and after 6 and 12 months. Femoral and lumbar BMD were measured at baseline and after 12 months by DEXA. RESULTS: Overall, there was a trend for ch-OSA to confer some additional benefit to Ca and Vit D3 treatment, especially for markers of bone formation, but only the marker for type I collagen formation (PINP) was significant at 12 months for the 6 and 12 mg Si dose (vs. placebo) without a clear dose response effect. A trend for a dose-corresponding increase was observed in the bone resorption marker, collagen type I C-terminal telopeptide (CTX-I). Lumbar spine BMD did not change significantly. Post-hoc subgroup analysis (baseline T-score femur < -1) however was significant for the 6 mg dose at the femoral neck (T-test). There were no ch-OSA related adverse events observed and biochemical safety parameters remained within the normal range. CONCLUSION: Combined therapy of ch-OSA and Ca/Vit D3 had a potential beneficial effect on bone collagen compared to Ca/Vit D3 alone which suggests that this treatment is of potential use in osteoporosis. NTR 1029.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Absorption of silicon from artesian aquifer water and its impact on bone health in postmenopausal women: a 12 week pilot study
<p>Abstract</p> <p>Background</p> <p>Decreased bone mineral density and osteoporosis in postmenopausal women represents a growing source of physical limitations and financial concerns in our aging population. While appropriate medical treatments such as bisphosphonate drugs and hormone replacement therapy exist, they are associated with serious side effects such as osteonecrosis of the jaw or increased cardiovascular risk. In addition to calcium and vitamin D supplementation, previous studies have demonstrated a beneficial effect of dietary silicon on bone health. This study evaluated the absorption of silicon from bottled artesian aquifer water and its effect on markers of bone metabolism.</p> <p>Methods</p> <p>Seventeen postmenopausal women with low bone mass, but without osteopenia or osteoporosis as determined by dual x-ray absorptiometry (DEXA) were randomized to drink one liter daily of either purified water of low-silicon content (PW) or silicon-rich artesian aquifer water (SW) (86 mg/L silica) for 12 weeks. Urinary silicon and serum markers of bone metabolism were measured at baseline and after 12 weeks and analyzed with two-sided t-tests with p < 0.05 defined as significant.</p> <p>Results</p> <p>The urinary silicon level increased significantly from 0.016 ± 0.010 mg/mg creatinine at baseline to 0.037 ± 0.014 mg/mg creatinine at week 12 in the SW group (p = 0.003), but there was no change for the PW group (0.010 ± 0.004 mg/mg creatinine at baseline vs. 0.009 ± 0.006 mg/mg creatinine at week 12, p = 0.679). The urinary silicon for the SW group was significantly higher in the silicon-rich water group compared to the purified water group (p < 0.01). NTx, a urinary marker of bone resorption did not change during the study and was not affected by the silicon water supplementation. No significant change was observed in the serum markers of bone formation compared to baseline measurements for either group.</p> <p>Conclusions</p> <p>These findings indicate that bottled water from artesian aquifers is a safe and effective way of providing easily absorbed dietary silicon to the body. Although the silicon did not affect bone turnover markers in the short-term, the mineral's potential as an alternative prevention or treatment to drug therapy for osteoporosis warrants further longer-term investigation in the future.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: NCT01067508</p
Identification of a mammalian silicon transporter.
Silicon (Si) has long been known to play a major physiological and structural role in certain organisms, including diatoms, sponges, and many higher plants, leading to the recent identification of multiple proteins responsible for Si transport in a range of algal and plant species. In mammals, despite several convincing studies suggesting that silicon is an important factor in bone development and connective tissue health, there is a critical lack of understanding about the biochemical pathways that enable Si homeostasis. Here we report the identification of a mammalian efflux Si transporter, namely Slc34a2 (also termed NaPiIIb), a known sodium-phosphate cotransporter, which was upregulated in rat kidney following chronic dietary Si deprivation. Normal rat renal epithelium demonstrated punctate expression of Slc34a2, and when the protein was heterologously expressed in Xenopus laevis oocytes, Si efflux activity (i.e., movement of Si out of cells) was induced and was quantitatively similar to that induced by the known plant Si transporter OsLsi2 in the same expression system. Interestingly, Si efflux appeared saturable over time, but it did not vary as a function of extracellular [Formula: see text] or Na+ concentration, suggesting that Slc34a2 harbors a functionally independent transport site for Si operating in the reverse direction to the site for phosphate. Indeed, in rats with dietary Si depletion-induced upregulation of transporter expression, there was increased urinary phosphate excretion. This is the first evidence of an active Si transport protein in mammals and points towards an important role for Si in vertebrates and explains interactions between dietary phosphate and silicon
- …