150 research outputs found

    Alternative Macroautophagic Pathways

    Get PDF
    Macroautophagy is a bulk degradation process that mediates the clearance of long-lived proteins, aggregates, or even whole organelles. This process includes the formation of autophagosomes, double-membrane structures responsible for delivering cargo to lysosomes for degradation. Currently, other alternative autophagy pathways have been described, which are independent of macroautophagic key players like Atg5 and Beclin 1 or the lipidation of LC3. In this review, we highlight recent insights in indentifying and understanding the molecular mechanism responsible for alternative autophagic pathways

    Topological data analysis approaches to uncovering the timing of ring structure onset in filamentous networks

    Full text link
    Improvements in experimental and computational technologies have led to significant increases in data available for analysis. Topological data analysis (TDA) is an emerging area of mathematical research that can identify structures in these data sets. Here we develop a TDA method to detect physical structures in a cell that persist over time. In most cells, protein filaments (actin) interact with motor proteins (myosins) and organize into polymer networks and higher-order structures. An example of these structures are ring channels that maintain constant diameters over time and play key roles in processes such as cell division, development, and wound healing. The interactions of actin with myosin can be challenging to investigate experimentally in living systems, given limitations in filament visualization \textit{in vivo}. We therefore use complex agent-based models that simulate mechanical and chemical interactions of polymer proteins in cells. To understand how filaments organize into structures, we propose a TDA method that assesses effective ring generation in data consisting of simulated actin filament positions through time. We analyze the topological structure of point clouds sampled along these actin filaments and propose an algorithm for connecting significant topological features in time. We introduce visualization tools that allow the detection of dynamic ring structure formation. This method provides a rigorous way to investigate how specific interactions and parameters may impact the timing of filamentous network organization.Comment: 20 pages, 9 figure

    Al-26-Mg-26 ages of iron meteorites

    Get PDF
    An exposure age for an iron meteorite can be calculated from measurements of a radioactive nuclide and a stable nuclide that are produced by similar sets of nuclear reactions, provided that the stable nuclide is present with low initial abundance. The standard methods rely on either K-40 (t(sub 1/2) = 1.26 Gy), K-39, and K-41 or on a shorter-lived radionuclide and a stable, noble gas isotope. Widely used pairs of this type include Cl-36/Ar-36 and Al-26/Ne-21. Other pairs that may serve the purpose for iron meteorites contain many stable isotopes besides those of K and the noble gases that are produced partly by cosmic rays. We consider here the calculation of exposure ages, t(sub 26), from measurements of Al-26 (t(sub 1/2) = 0.7 My) and (stable) Mg-26. Ages based on Al-26/Mg-26 ratios, like those based on Cl-36/Ar-36 ratios, are 'buffered' against changes in relative production rates due to shielding because decay of the radioactive nuclide accounts for a good part of the inventory of the stable nuclide

    Impact of Dietary Resistant Starch Type 4 on Human Gut Microbiota and Immunometabolic Functions

    Get PDF
    Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group. 16S-rRNA gene sequencing revealed a differential abundance of 71 bacterial operational taxonomic units, including the enrichment of three Bacteroides species and one each of Parabacteroides, Oscillospira, Blautia, Ruminococcus, Eubacterium, and Christensenella species in the RS4 group. Gas chromatography-mass spectrometry revealed higher faecal SCFAs, including butyrate, propionate, valerate, isovalerate, and hexanoate after RS4-intake. Bivariate analyses showed RS4-specific associations of the gut microbiota with the host metabolic functions and SCFA levels. Here we show that dietary RS4 induced changes in the gut microbiota are linked to its biological activity in individuals with signs of MetS. These findings have potential implications for dietary guidelines in metabolic health management

    Elevated vitreous body glial fibrillary acidic protein in retinal diseases

    Get PDF
    Purpose: Increased expression of glial fibrillary acidic protein (GFAP) is a characteristic of gliotic activation (Müller cells and astrocytes) in the retina. This study assessed vitreous body GFAP levels in various forms of retinal pathology. Methods: This prospective study included 82 patients who underwent vitrectomy (46 retinal detachments (RDs), 13 macular hole (MHs), 15 epiretinal glioses (EGs), 8 organ donors). An established enzyme–linked immunosorbent assay (ELISA, SMI26) was used for quantification of GFAP. Results: The highest concentration of vitreous body GFAP in organ donors was 20 pg/mL and it was used as the cutoff. A significant proportion of patients suffering from RD (65 %) to EG (53 %) had vitreous body GFAP levels above this cutoff when compared to organ donors (0 %, p < 0.0001, p = 0.0194, respectively, Fisher’s exact test) and MH (8 %, p < 0.0001, p = 0.0157, respectively). In RD and EG, vitreous body GFAP levels were correlated with axial length (R = 0.69, R = 0.52, p < 0.05 for both). Conclusions: The data suggest that human vitreous body GFAP is a protein biomarker for glial activation in response to retinal pathologies. Vitreous body GFAP levels may be of interest as a surrogate outcome for experimental treatment strategies in translational studies

    Pudendal nerve decompression in perineology : a case series

    Get PDF
    BACKGROUND: Perineodynia (vulvodynia, perineal pain, proctalgia), anal and urinary incontinence are the main symptoms of the pudendal canal syndrome (PCS) or entrapment of the pudendal nerve. The first aim of this study was to evaluate the effect of bilateral pudendal nerve decompression (PND) on the symptoms of the PCS, on three clinical signs (abnormal sensibility, painful Alcock's canal, painful "skin rolling test") and on two neurophysiological tests: electromyography (EMG) and pudendal nerve terminal motor latencies (PNTML). The second aim was to study the clinical value of the aforementioned clinical signs in the diagnosis of PCS. METHODS: In this retrospective analysis, the studied sample comprised 74 female patients who underwent a bilateral PND between 1995 and 2002. To accomplish the first aim, the patients sample was compared before and at least one year after surgery by means of descriptive statistics and hypothesis testing. The second aim was achieved by means of a statistical comparison between the patient's group before the operation and a control group of 82 women without any of the following signs: prolapse, anal incontinence, perineodynia, dyschesia and history of pelvi-perineal surgery. RESULTS: When bilateral PND was the only procedure done to treat the symptoms, the cure rates of perineodynia, anal incontinence and urinary incontinence were 8/14, 4/5 and 3/5, respectively. The frequency of the three clinical signs was significantly reduced. There was a significant reduction of anal and perineal PNTML and a significant increase of anal richness on EMG. The Odd Ratio of the three clinical signs in the diagnosis of PCS was 16,97 (95% CI = 4,68 – 61,51). CONCLUSION: This study suggests that bilateral PND can treat perineodynia, anal and urinary incontinence. The three clinical signs of PCS seem to be efficient to suspect this diagnosis. There is a need for further studies to confirm these preliminary results

    Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intraurethral electrical stimulation (IES) of pudendal afferent nerve fibers can evoke both excitatory and inhibitory bladder reflexes in cats. These pudendovesical reflexes are a potential substrate for restoring bladder function in persons with spinal cord injury or other neurological disorders. However, the complex distribution of pudendal afferent fibers along the lower urinary tract presents a challenge when trying to determine the optimal geometry and position of IES electrodes for evoking these reflexes. This study aimed to determine the optimal intraurethral electrode configuration(s) and locations for selectively activating targeted pudendal afferents to aid future preclinical and clinical investigations.</p> <p>Methods</p> <p>A finite element model (FEM) of the male cat urethra and surrounding structures was generated to simulate IES with a variety of electrode configurations and locations. The activating functions (AFs) along pudendal afferent branches innervating the cat urethra were determined. Additionally, the thresholds for activation of pudendal afferent branches were measured in α-chloralose anesthetized cats.</p> <p>Results</p> <p>Maximum AFs evoked by intraurethral stimulation in the FEM and in vivo threshold intensities were dependent on stimulation location and electrode configuration.</p> <p>Conclusions</p> <p>A ring electrode configuration is ideal for IES. Stimulation near the urethral meatus or prostate can activate the pudendal afferent fibers at the lowest intensities, and allowed selective activation of the dorsal penile nerve or cranial sensory nerve, respectively. Electrode location was a more important factor than electrode configuration for determining stimulation threshold intensity and nerve selectivity.</p

    Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones

    Get PDF
    Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET). These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC) did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction
    corecore