83 research outputs found

    Association of ongoing drug and alcohol use with non-adherence to antiretroviral therapy and higher risk of AIDS and death: results from ACTG 362

    Get PDF
    Drug and alcohol use have been associated with a worse prognosis in short-term and cross-sectional analyses of HIV-infected populations, but longitudinal effects on adherence to antiretroviral therapy (ART) and clinical outcomes in advanced AIDS are less well characterized. We assessed self-reported drug and alcohol use in AIDS patients, and examined their association with non-adherence and death or disease progression in a multicenter observational study. We defined non-adherence as reporting missed ART doses in the 48 hours before study visits. The association between drug use and ART non-adherence was evaluated using repeated measures generalized estimating equation (GEE) models. The association between drug and alcohol use and time to new AIDS diagnosis or death was evaluated via Cox regression models, controlling for covariates including ART adherence. Of 643 participants enrolled between 1997–1999 and followed through 2007, at entry 39% reported ever using cocaine, 24% amphetamines, and 10% heroin. Ongoing drug use during study follow-up was reported by 9% using cocaine, 4% amphetamines, and 1% heroin. Hard drug (cocaine, amphetamines, or heroin) users had 2.1 times higher odds (p=0.001) of ART non-adherence in GEE models and 2.5 times higher risk (p=0.04) of AIDS progression or death in Cox models. Use of hard drugs was attenuated as a risk factor for AIDS progression or death after controlling for non-adherence during follow-up (HR=2.11, p=0.08), but was still suggestive of a possible adherence-independent mechanism of harm. This study highlights the need to continuously screen and treat patients for drug use as a part of ongoing HIV care

    Text Mining Improves Prediction of Protein Functional Sites

    Get PDF
    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions

    Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    Get PDF
    Macrophages are a type of immune cell that engulf and digest microorganisms. Despite their role in protecting the host from infection, many pathogens have developed ways to hijack the macrophage and use the cell for their own survival and proliferation. This includes the parasites Trypanosoma cruzi and Leishmania mexicana. In order to gain further understanding of how these pathogens interact with the host macrophage, we compared macrophages that have been infected with these parasites to macrophages that have been stimulated in a number of different ways. Macrophages can be activated by a wide variety of stimuli, including common motifs found on pathogens (known as pathogen associated molecular patterns or PAMPs) and cytokines secreted by other immune cells. In this study, we have delineated the relationships between the macrophage activation programs elicited by a number of cytokines and PAMPs. Furthermore, we have placed the macrophage responses to T. cruzi and L. mexicana into the context of these activation programs, providing a better understanding of the interactions between these pathogens and macrophages

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Initial Public Offerings and the Firm Location

    Get PDF
    The firm geographic location matters in IPOs because investors have a strong preference for newly issued local stocks and provide abnormal demand in local offerings. Using equity holdings data for more than 53,000 households, we show the probability to participate to the stock market and the proportion of the equity wealth is abnormally increasing with the volume of the IPOs inside the investor region. Upon nearly the universe of the 167,515 going public and private domestic manufacturing firms, we provide consistent evidence that the isolated private firms have higher probability to go public, larger IPO underpricing cross-sectional average and volatility, and less pronounced long-run under-performance. Similar but opposite evidence holds for the local concentration of the investor wealth. These effects are economically relevant and robust to local delistings, IPO market timing, agglomeration economies, firm location endogeneity, self-selection bias, and information asymmetries, among others. Findings suggest IPO waves have a strong geographic component, highlight that underwriters significantly under-estimate the local demand component thus leaving unexpected money on the table, and support state-contingent but constant investor propensity for risk
    • …
    corecore