37 research outputs found

    Allergic conditions and risk of hematological malignancies in adults: a cohort study

    Get PDF
    BACKGROUND: Two contradictory hypotheses have been proposed to explain the relationship between allergic conditions and malignancies, the immune surveillance hypothesis and the antigenic stimulation hypothesis. The former advocates that allergic conditions may be protective against development of cancer, whereas the latter proposes an increased risk. This relationship has been studied in several case-control studies, but only in a few cohort studies. METHODS: The association between allergic conditions and risk of developing leukemia, Hodgkin's disease, non-Hodgkin's lymphoma and myeloma was investigated in a cohort of 16,539 Swedish twins born 1886–1925. Prospectively collected, self-reported information about allergic conditions such as asthma, hay fever or eczema was obtained through questionnaires administered in 1967. The cohort was followed 1969–99 and cancer incidence was ascertained from the Swedish Cancer Registry. RESULTS: Hives and asthma tended to increase the risk of leukemia (relative risk [RR] = 2.1, 95% Confidence Interval [CI] 1.0–4.5 and RR = 1.6, 95% CI 0.8–3.5, respectively). There was also an indication of an increased risk of non-Hodgkin's lymphoma associated with eczema during childhood (RR = 2.3, 95% CI 1.0–5.3). CONCLUSION: In contrast to most previous studies, our results do not indicate a protective effect of allergic conditions on the risk of developing hematological malignancies. Rather, they suggest that allergic conditions might increase the risk of some hematological malignancies

    Inherited variation in immune genes and pathways and glioblastoma risk

    Get PDF
    To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) and a subset of 6029 SNPs in 893 genes from 531 cases and 1782 controls from MD Anderson (MDA). To further assess consistency of SNP-level associations, we also compared data from the UK (266 cases and 2482 controls) and the Mayo Clinic (114 cases and 111 controls). Although three correlated epidermal growth factor receptor (EGFR) SNPs were consistently associated with glioblastoma in all four data sets (Mantel–Haenzel P values = 1 × 10−5 to 4 × 10−3), independent replication is required as genome-wide significance was not attained. In gene-level analyses, eight immune function genes were significantly (minP < 0.05) associated with glioblastoma; the IL-2RA (CD25) cytokine gene had the smallest minP values in both UCSF (minP = 0.01) and MDA (minP = 0.001) data sets. The IL-2RA receptor is found on the surface of regulatory T cells potentially contributing to immunosuppression characteristic of the glioblastoma microenvironment. In pathway correlation analyses, cytokine signaling and adhesion–extravasation–migration pathways showed similar associations with glioblastoma risk in both MDA and UCSF data sets. Our findings represent the first systematic description of immune genes and pathways that characterize glioblastoma risk

    Brain tumor epidemiology in the era of precision medicine: The 2017 Brain Tumor Epidemiology Consortium meeting report

    No full text
    The Brain Tumor Epidemiology Consortium (BTEC) is an international consortium that aims to advance the development of multicenter and interdisciplinary collaborations that focus on research related to the etiology, outcomes, and prevention of brain tumors. The 18th annual BTEC meeting was held in Banff, AB, Canada, on June 27&nbsp;-&nbsp;29, 2017. The meeting focused on the intersection between epidemiology and precision medicine, that is, the use of molecular indicators of risk, early disease and prognosis or precision epidemiology. While traditional epidemiologic approaches group large numbers of participants for statistical power, precision epidemiology is founded on the uniqueness and biology of individual disease characteristics. With this in mind, plenary speakers described the molecular heterogeneity of adult and pediatric brain tumors and how those characteristics are currently being used to guide therapy and etiologic research. Rare subtypes and novel mechanisms for recruitment of individuals for research on brain tumors were discussed along with concepts and methodology related to biological and etiologic heterogeneity. The incorporation of relevant molecular classifiers into population registries was emphasized for its role in future research endeavors, ensuring the accessibility of such tools for researchers and clinicians seeking to improve the lives of individuals with brain tumors and those at risk. The next BTEC meeting will be held in Copenhagen, Denmark, in June 2018.


    Bacterial 16S Sequence Analysis of Severe Caries in Young Permanent Teeth ▿

    No full text
    Previous studies have confirmed the association of the acid producers Streptococcus mutans and Lactobacillus spp. with childhood caries, but they also suggested these microorganisms are not sufficient to explain all cases of caries. In addition, health-associated bacterial community profiles are not well understood, including the importance of base production and acid catabolism in pH homeostasis. The bacterial community composition in health and in severe caries of the young permanent dentition was compared using Sanger sequencing of the ribosomal 16S rRNA genes. Lactobacillus species were dominant in severe caries, and levels rose significantly as caries progressed from initial to deep lesions. S. mutans was often observed at high levels in the early stages of caries but also in some healthy subjects and was not statistically significantly associated with caries progression in the overall model. Lactobacillus or S. mutans was found either at low levels or not present in several samples. Other potential acid producers observed at high levels in these subjects included strains of Selenomonas, Neisseria, and Streptococcus mitis. Propionibacterium FMA5 was significantly associated with caries progression but was not found at high levels. An overall loss of community diversity occurred as caries progressed, and species that significantly decreased included the Streptococcus mitis-S. pneumoniae-S. infantis group, Corynebacterium matruchotii, Streptococcus gordonii, Streptococcus cristatus, Capnocytophaga gingivalis, Eubacterium IR009, Campylobacter rectus, and Lachnospiraceae sp. C1. The relationship of acid-base metabolism to 16S rRNA gene-based species assignments appears to be complex, and metagenomic approaches that would allow functional profiling of entire genomes will be helpful in elucidating the microbial pathogenesis of caries

    Associations between prediagnostic blood glucose levels, diabetes, and glioma

    No full text
    Previous literature indicates that pre-diagnostic diabetes and blood glucose levels are inversely related to glioma risk. To replicate these findings and determine whether they could be attributed to excess glucose consumption by the preclinical tumour, we used data from the Apolipoprotein MOrtality RISk (AMORIS) (n = 528,580) and the Metabolic syndrome and Cancer project (Me-Can) cohorts (n = 269,365). We identified individuals who were followed for a maximum of 15 years after their first blood glucose test until glioma diagnosis, death, emigration or the end of follow-up. Hazard ratios (HRs), 95% confidence intervals (CIs) and their interactions with time were estimated using Cox time-dependent regression. As expected, pre-diagnostic blood glucose levels were inversely related to glioma risk (AMORIS, P-trend = 0.002; Me-Can, P-trend = 0.04) and pre-diagnostic diabetes (AMORIS, HR = 0.30, 95% CI 0.17 to 0.53). During the year before diagnosis, blood glucose was inversely associated with glioma in the AMORIS (HR = 0.78, 95% CI 0.66 to 0.93) but not the Me-Can cohort (HR = 0.99, 95% CI 0.63 to 1.56). This AMORIS result is consistent with our hypothesis that excess glucose consumption by the preclinical tumour accounts for the inverse association between blood glucose and glioma. We discuss additional hypothetical mechanisms that may explain our paradoxical findings
    corecore