86 research outputs found
Longitudinal assessments highlight long-term behavioural recovery in disorders of consciousness.
Accurate diagnosis and prognosis of disorders of consciousness is complicated by the variability amongst patients' trajectories. However, the majority of research and scientific knowledge in this field is based on cross-sectional studies. The translational gap in applying this knowledge to inform clinical management can only be bridged by research that systematically examines follow-up. In this study, we present findings from a novel longitudinal study of the long-term recovery trajectory of 39 patients, repeatedly assessed using the Coma Recovery Scale-Revised once every 3âmonths for 2âyears, generating 185 assessments. Despite the expected inter-patient variability, there was a statistically significant improvement in behaviour over time. Further, improvements began approximately 22âmonths after injury. Individual variation in the trajectory of recovery was influenced by initial diagnosis. Patients with an initial diagnosis of unresponsive wakefulness state, who progressed to the minimally conscious state, did so at a median of 485âdays following onset-later than 12-month period after which current guidelines propose permanence. Although current guidelines are based on the expectation that patients with traumatic brain injury show potential for recovery over longer periods than those with non-traumatic injury, we did not observe any differences between trajectories in these two subgroups. However, age was a significant predictor, with younger patients showing more promising recovery. Also, progressive increases in arousal contributed exponentially to improvements in behavioural awareness, especially in minimally conscious patients. These findings highlight the importance of indexing arousal when measuring awareness, and the potential for interventions to regulate arousal to aid long-term behavioural recovery in disorders of consciousness
Bedside EEG predicts longitudinal behavioural changes in disorders of consciousness.
Providing an accurate prognosis for prolonged disorder of consciousness (pDOC) patients remains a clinical challenge. Large cross-sectional studies have demonstrated the diagnostic and prognostic value of functional brain networks measured using high-density electroencephalography (hdEEG). Nonetheless, the prognostic value of these neural measures has yet to be assessed by longitudinal follow-up. We address this gap by assessing the utility of hdEEG to prognosticate long-term behavioural outcome, employing longitudinal data collected from a cohort of patients assessed systematically with resting hdEEG and the Coma Recovery Scale-Revised (CRS-R) at the bedside over a period of two years. We used canonical correlation analysis to relate clinical (including CRS-R scores combined with demographic variables) and hdEEG variables to each other. This analysis revealed that the patient's age, and the hdEEG theta band power and alpha band connectivity, contributed most significantly to the relationship between hdEEG and clinical variables. Further, we found that hdEEG measures recorded at the time of assessment augmented clinical measures in predicting CRS-R scores at the next assessment. Moreover, the rate of hdEEG change not only predicted later changes in CRS-R scores, but also outperformed clinical measures in terms of prognostic power. Together, these findings suggest that improvements in functional brain networks precede changes in behavioural awareness in pDOC. We demonstrate here that bedside hdEEG assessments conducted at specialist nursing homes are feasible, have clinical utility, and can complement clinical knowledge and systematic behavioural assessments to inform prognosis and care
Fractal dimension of cortical functional connectivity networks & severity of disorders of consciousness.
Recent evidence suggests that the quantity and quality of conscious experience may be a function of the complexity of activity in the brain and that consciousness emerges in a critical zone between low and high-entropy states. We propose fractal shapes as a measure of proximity to this critical point, as fractal dimension encodes information about complexity beyond simple entropy or randomness, and fractal structures are known to emerge in systems nearing a critical point. To validate this, we tested several measures of fractal dimension on the brain activity from healthy volunteers and patients with disorders of consciousness of varying severity. We used a Compact Box Burning algorithm to compute the fractal dimension of cortical functional connectivity networks as well as computing the fractal dimension of the associated adjacency matrices using a 2D box-counting algorithm. To test whether brain activity is fractal in time as well as space, we used the Higuchi temporal fractal dimension on BOLD time-series. We found significant decreases in the fractal dimension between healthy volunteers (n = 15), patients in a minimally conscious state (n = 10), and patients in a vegetative state (n = 8), regardless of the mechanism of injury. We also found significant decreases in adjacency matrix fractal dimension and Higuchi temporal fractal dimension, which correlated with decreasing level of consciousness. These results suggest that cortical functional connectivity networks display fractal character and that this is associated with level of consciousness in a clinically relevant population, with higher fractal dimensions (i.e. more complex) networks being associated with higher levels of consciousness. This supports the hypothesis that level of consciousness and system complexity are positively associated, and is consistent with previous EEG, MEG, and fMRI studies
Recommended from our members
Methylphenidate-mediated motor control network enhancement in patients with traumatic brain injury.
PRIMARY OBJECTIVE: To investigate functional improvement late (>6Â months) after traumatic brain injury (TBI). To this end, we conducted a double-blind, placebo-controlled experimental medicine study to test the hypothesis that a widely used cognitive enhancer would benefit patients with TBI. RESEARCH DESIGN: We focused on motor control function using a sequential finger opposition fMRI paradigm in both patients and age-matched controls. METHODS AND PROCEDURES: Patients' fMRI and DTI scans were obtained after randomised administration of methylphenidate or placebo. Controls were scanned without intervention. To assess differences in motor speed, we compared reaction times from the baseline condition of a sustained attention task. MAIN OUTCOMES AND RESULTS: Patients' reaction times correlated with wide-spread motor-related white matter abnormalities. Administration of methylphenidate resulted in faster reaction times in patients, which were not significantly different from those achieved by controls. This was also reflected in the fMRI findings in that patients on methylphenidate activated the left inferior frontal gyrus significantly more than when on placebo. Furthermore, stronger functional connections between pre-/post-central cortices and cerebellum were noted for patients on methylphenidate. CONCLUSIONS: Our findings suggest that residual functionality in patients with TBI may be enhanced by a single dose of methylphenidate.The study was funded by the Evelyn Trust- grant number 06/20. C.D. was funded by the Clinical Academic Research Awards organized by the East of England Multi Professional Deanery. B.J.S. consults for Cambridge Cognition, Otsuka, Servier and Lundbeck. She holds a grant from Janssen/J&J and has share options in Cambridge Cognition. D.K.M. is supported by the Neuroscience Theme of the NIHR Cambridge Biomedical Research Centre and NIHR Senior Investigator awards, and by Framework Program 7 funding from the European Commission (TBIcare). He has received lecture and consultancy fees and support for research from Glaxo SmithKline, Solvay and Linde. E.A.S. is funded by the Stephen Erskine Fellowship, Queens' College, Cambridge, UK
Consciousness-specific dynamic interactions of brain integration and functional diversity
Abstract: Prominent theories of consciousness emphasise different aspects of neurobiology, such as the integration and diversity of information processing within the brain. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from awake volunteers, propofol-anaesthetised volunteers, and patients with disorders of consciousness, in order to identify consciousness-specific patterns of brain function. We demonstrate that cortical networks are especially affected by loss of consciousness during temporal states of high integration, exhibiting reduced functional diversity and compromised informational capacity, whereas thalamo-cortical functional disconnections emerge during states of higher segregation. Spatially, posterior regions of the brainâs default mode network exhibit reductions in both functional diversity and integration with the rest of the brain during unconsciousness. These results show that human consciousness relies on spatio-temporal interactions between brain integration and functional diversity, whose breakdown may represent a generalisable biomarker of loss of consciousness, with potential relevance for clinical practice
Spectral signatures of reorganised brain networks in disorders of consciousness.
Theoretical advances in the science of consciousness have proposed that it is concomitant with balanced cortical integration and differentiation, enabled by efficient networks of information transfer across multiple scales. Here, we apply graph theory to compare key signatures of such networks in high-density electroencephalographic data from 32 patients with chronic disorders of consciousness, against normative data from healthy controls. Based on connectivity within canonical frequency bands, we found that patient networks had reduced local and global efficiency, and fewer hubs in the alpha band. We devised a novel topographical metric, termed modular span, which showed that the alpha network modules in patients were also spatially circumscribed, lacking the structured long-distance interactions commonly observed in the healthy controls. Importantly however, these differences between graph-theoretic metrics were partially reversed in delta and theta band networks, which were also significantly more similar to each other in patients than controls. Going further, we found that metrics of alpha network efficiency also correlated with the degree of behavioural awareness. Intriguingly, some patients in behaviourally unresponsive vegetative states who demonstrated evidence of covert awareness with functional neuroimaging stood out from this trend: they had alpha networks that were remarkably well preserved and similar to those observed in the controls. Taken together, our findings inform current understanding of disorders of consciousness by highlighting the distinctive brain networks that characterise them. In the significant minority of vegetative patients who follow commands in neuroimaging tests, they point to putative network mechanisms that could support cognitive function and consciousness despite profound behavioural impairment.This work was supported by grants from the Wellcome Trust [WT093811MA to T.B.]; the James S. McDonnell Foundation [to A.M.O. and J.D.P.]; the UK Medical Research Council [U.1055.01.002.00001.01 to A.M.O. and J.D.P.]; the Canada Excellence Research Chairs program [to A.M.O.]; the National
Institute for Health Research Cambridge Biomedical Research Centre [to J.D.P.]; and the National Institute for Health Research Senior Investigator and Healthcare Technology Cooperative awards [to J.D.P.].This is the final version of the article. It first appeared from PLOS via http://dx.doi.org
Mood, Activity Participation, and Leisure Engagement Satisfaction (MAPLES): Results From a Randomised Controlled Pilot Feasibility Trial for Low Mood in Acquired Brain Injury
Background: Acquired brain injury (ABI) is linked to increased depression risk. Existing therapies for depression in ABI (e.g., Cognitive Behavioural Therapy) have mixed efficacy. Behavioural Activation (BA), an intervention that encourages engaging in positively reinforcing activities, shows promise. The primary aims were to assess feasibility, acceptability, and potential efficacy of two 8-week BA groups.
Methods: Adults (⼠18 years) recruited from local ABI services, charities, and self-referral via social media were randomised to condition. The Activity Planning group (AP; âtraditionalâ BA) trained participants to plan reinforcing activities over 8 weeks, the Activity Engagement group (AE; âexperientialâ BA) encouraged engagement in positive activities within session only. Both BA groups were compared to an 8-week Waitlist group (WL). The primary outcomes, feasibility and acceptability, were assessed via recruitment, retention, attendance, and qualitative feedback on groups. The secondary outcome, potential efficacy, was assessed via blinded assessments of self-reported activity levels, depression, and anxiety (at pre- and post-intervention and 1 month follow up) and were compared across trial arms. Data were collected in-person and remotely due to COVID-19.
Results: N = 60 participants were randomised to AP (randomised n = 22; total n = 29), AE (randomised n = 22; total n = 28), or re-randomised following WL (total n = 16). Whether in-person or remote, AP and AE were rated as similarly enjoyable and. In exploring efficacy, 58.33% of AP members had clinically meaningful activity level improvements, relative to 50% AE and 38.5% WL. Both AP and AE groups had depression reductions relative to WL, but only AP participants demonstrated anxiety reductions relative to AE and WL. AP participants noted benefits of learning strategies to increase activities and learning from other group members. AE participants valued social discussion and choice in selecting in-session activities.
Conclusions: Both in-person and remote group BA were feasible and acceptable in ABI. Though both traditional and experiential BA may be effective, these may have different mechanisms.
Trial Registration: Clinicaltrials.gov, NCT03874650. Protocol version 2.3, May 26th 2020
Recommended from our members
The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Toward a Therapeutic Approach
The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion
Baraitser-Winter cerebrofrontofacial syndrome: Delineation of the spectrum in 42 cases
Baraitser-Winter, Fryns-Aftimos and cerebrofrontofacial syndrome types 1 and 3 have recently been associated with heterozygous gain-of-function mutations in one of the two ubiquitous cytoplasmic actin-encoding genes ACTB and ACTG1 that encode β- and γ-actins. We present detailed phenotypic descriptions and neuroimaging on 36 patients analyzed by our group and six cases from the literature with a molecularly proven actinopathy (9 ACTG1 and 33 ACTB). The major clinical anomalies are striking dysmorphic facial features with hypertelorism, broad nose with large tip and prominent root, congenital non-myopathic ptosis, ridged metopic suture and arched eyebrows. Iris or retinal coloboma is present in many cases, as is sensorineural deafness. Cleft lip and palate, hallux duplex, congenital heart defects and renal tract anomalies are seen in some cases. Microcephaly may develop with time. Nearly all patients with ACTG1 mutations, and around 60% of those with ACTB mutations have some degree of pachygyria with anteroposterior severity gradient, rarely lissencephaly or neuronal heterotopia. Reduction of shoulder girdle muscle bulk and progressive joint stiffness is common. Early muscular involvement, occasionally with congenital arthrogryposis, may be present. Progressive, severe dystonia was seen in one family. Intellectual disability and epilepsy are variable in severity and largely correlate with CNS anomalies. One patient developed acute lymphocytic leukemia, and another a cutaneous lymphoma, indicating that actinopathies may be cancer-predisposing disorders. Considering the multifaceted role of actins in cell physiology, we hypothesize that some clinical manifestations may be partially mutation specific. Baraitser-Winter cerebrofrontofacial syndrome is our suggested designation for this clinical entity
- âŚ