79 research outputs found
Malaria vectors and transmission dynamics in coastal south-western Cameroon
BACKGROUND: Malaria is a major public health problem in Cameroon. Unlike in the southern forested areas where the epidemiology of malaria has been better studied prior to the implementation of control activities, little is known about the distribution and role of anophelines in malaria transmission in the coastal areas. METHODS: A 12-month longitudinal entomological survey was conducted in Tiko, Limbe and Idenau from August 2001 to July 2002. Mosquitoes captured indoors on human volunteers were identified morphologically. Species of the Anopheles gambiae complex were identified using the polymerase chain reaction (PCR). Mosquito infectivity was detected by the enzyme-linked immunosorbent assay and PCR. Malariometric indices (plasmodic index, gametocytic index, parasite species prevalence) were determined in three age groups (<5 yrs, 5–15 yrs, >15 yrs) and followed-up once every three months. RESULTS: In all, 2,773 malaria vectors comprising Anopheles gambiae (78.2%), Anopheles funestus (17.4%) and Anopheles nili (7.4%) were captured. Anopheles melas was not anthropophagic. Anopheles gambiae had the highest infection rates. There were 287, 160 and 149 infective bites/person/year in Tiko, Limbe and Idenau, respectively. Anopheles gambiae accounted for 72.7%, An. funestus for 23% and An. nili for 4.3% of the transmission. The prevalence of malaria parasitaemia was 41.5% in children <5 years of age, 31.5% in those 5–15 years and 10.5% in those >15 years, and Plasmodium falciparum was the predominant parasite species. CONCLUSION: Malaria transmission is perennial, rainfall dependent and An. melas does not contribute to transmission. These findings are important in the planning and implementation of malaria control activities in coastal Cameroon and West Africa
Role of Anopheles (Cellia) rufipes (Gough, 1910) and other local anophelines in human malaria transmission in the northern savannah of Cameroon: a crosssectional survey
Background
As part of a study to determine the impact of insecticide resistance on the effectiveness of longlasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite
transmission.
Methods
For four consecutive years (2011–2014), annual cross-sectional sampling of adult mosquitoes was conducted during the peak malaria season (September-October) in three health districts in northern Cameroon. Mosquitoes sampled by human landing catch and pyrethrum spray catch methods were morphologically identified,
their ovaries dissected for parity determination and Anopheles gambiae siblings were identified by molecular assay. Infection with P. falciparum and blood meal source in residual fauna of indoor resting anopheline mosquitoes were determined by enzyme-linked-immunosorbent assays.
Results
Anopheles gambiae (sensu lato) (s.l.) comprised 18.4% of mosquitoes collected with An. arabiensis representing 66.27% of the sibling species. The proportion of An. rufipes (2.7%) collected was high with a humanbiting rate ranging between 0.441 and 11.083 bites/person/night (b/p/n) and an anthropophagic rate of 15.36%.
Although overall the members of An. gambiae complex were responsible for most of the transmission with entomological inoculation rates (EIR) reaching 1.221 infective bites/person/night (ib/p/n), An. arabiensis and An.coluzzii were the most implicated. The roles of An. funestus, An. pharoensis and An. paludis were minor. Plasmodium falciparum circumsporozoite protein rate in Anopheles rufipes varied from 0.6 to 5.7% with EIR values between 0.010
and 0.481 ib/p/n
Conclusions
The study highlights the epidemiological role of An. rufipes alongside the members of the An.gambiae complex, and several other sympatric species in human malaria transmission during the wet season in northern Cameroon. For the first time in Cameroon, An. rufipes has been shown to be an important local malaria vector, emphasising the need to review the malaria entomological profile across the country as pre-requisite to
effective vector management strategies
Role of Anopheles (Cellia) rufipes (Gough, 1910) and other local anophelines in human malaria transmission in the northern savannah of Cameroon: a crosssectional survey
Background
As part of a study to determine the impact of insecticide resistance on the effectiveness of longlasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite
transmission.
Methods
For four consecutive years (2011–2014), annual cross-sectional sampling of adult mosquitoes was conducted during the peak malaria season (September-October) in three health districts in northern Cameroon. Mosquitoes sampled by human landing catch and pyrethrum spray catch methods were morphologically identified,
their ovaries dissected for parity determination and Anopheles gambiae siblings were identified by molecular assay. Infection with P. falciparum and blood meal source in residual fauna of indoor resting anopheline mosquitoes were determined by enzyme-linked-immunosorbent assays.
Results
Anopheles gambiae (sensu lato) (s.l.) comprised 18.4% of mosquitoes collected with An. arabiensis representing 66.27% of the sibling species. The proportion of An. rufipes (2.7%) collected was high with a humanbiting rate ranging between 0.441 and 11.083 bites/person/night (b/p/n) and an anthropophagic rate of 15.36%.
Although overall the members of An. gambiae complex were responsible for most of the transmission with entomological inoculation rates (EIR) reaching 1.221 infective bites/person/night (ib/p/n), An. arabiensis and An.coluzzii were the most implicated. The roles of An. funestus, An. pharoensis and An. paludis were minor. Plasmodium falciparum circumsporozoite protein rate in Anopheles rufipes varied from 0.6 to 5.7% with EIR values between 0.010
and 0.481 ib/p/n
Conclusions
The study highlights the epidemiological role of An. rufipes alongside the members of the An.gambiae complex, and several other sympatric species in human malaria transmission during the wet season in northern Cameroon. For the first time in Cameroon, An. rufipes has been shown to be an important local malaria vector, emphasising the need to review the malaria entomological profile across the country as pre-requisite to
effective vector management strategies
Distribution of Anopheles gambiae s.l siblings, insecticide resistance and prevalence of markers of resistance (Kdr & Ace-1) in Edea and Buea: forest region of Cameroon
Background:
The complexity and heterogeneity of malaria transmission in Cameroon is enhanced by the different eco-systems and topology which enhance the proliferation of Anopheline mosquitoes. Though long-lasting insecticide-treated nets have been massively distributed across the country, malaria still remains a significant public health concern, with innate and adaptive resistance mechanisms exploited by malaria vectors against different insecticides; the micro-ecological variations in Cameroon could be playing a viral role in the expression of essential insecticide resistance genes in malaria vectors. Thus, this study sought to assess and compare phenotypic resistance to commonly used insecticides and the prevalence of markers of insecticide resistance to Anopheles gambiae s.l from two localities within the forest ecological zone of Cameroon.
Material and methods:
Three to five days mosquitoes obtained from larva collected at eight breeding sites in Buea and Edea were morphologically identified and phenotypic resistance to pyrethroid, organophosphate and carbamate insecticides assessed using the WHO bioassay protocol. Molecular speciation of An. gambiae s.l and the prevalence of L1014F and Ace-1R G119S mutations was assessed using PCR.
Results:
Anopheles coluzzii and An. gambiae were the only siblings species identified in both communities, with An. coluzzii being the dominant sibling in Edea and the latter in Buea. Anopheles gambiae s.l was resistance to diagnostic concentrations of all insecticides in Buea but susceptible to 1X bendiocarb and 1X pirimiphosmethyl in Edea. In both communities, mortality increased with increasing concentration of alphacypermethrin, permethrin, pirimiphosmethyl and bendiocarb while PBO had a synergistic effect on all pyrethroid insecticides tested. There was a significant difference in the mortality to 1X permethrin (p = 0.014),1X permethrin + PBO (p = 0.001), 5X permethrin (p < 0.001), 1X alphacypermethrin + PBO (p < 0.001), 1X pirimiphosmethyl (p < 0.001) and 1X bendiocarb (p < 0.001) in Buea compared to Edea.
Conclusion:
Anopheles gambiae and An. coluzzii were the major malaria vectors in both communities.Though these vectors were resistant to the diagnostic dose of all insecticides in Buea, they were susceptible to 1X bendiocarb and 1X pirimiphosmethyl in Edea
Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination
Abstract
Malaria still has a devastating impact on public health and welfare in Cameroon. Despite the increasing number of studies conducted on disease prevalence, transmission patterns or treatment, there are to date, not enough studies summarising findings from previous works in order to identify gaps in knowledge and areas of interest where further evidence is needed to drive malaria elimination efforts. The present study seeks to address these gaps by providing a review of studies conducted so far on malaria in Cameroon since the 1940s to date. Over 250 scientific publications were consulted for this purpose. Although there has been increased scale-up of vector control interventions which significantly reduced the morbidity and mortality to malaria across the country from a prevalence of 41% of the population reporting at least one malaria case episode in 2000 to a prevalence of 24% in 2017, the situation is not yet under control. There is a high variability in disease endemicity between epidemiological settings with prevalence of Plasmodium parasitaemia varying from 7 to 85% in children aged 6 months to 15 years after long-lasting insecticidal nets (LLINs) scale-up. Four species of Plasmodium have been recorded across the country including Plasmodium falciparum, P. malariae, P. ovale and P. vivax. Several primate-infecting Plasmodium spp. are also circulating in Cameroon. A decline of artemisinin-based combinations therapeutic efficacy from 97% in 2006 to 90% in 2016 have been reported. Several mutations in the P. falciparum chloroquine resistance (Pfcrt) and P. falciparum multidrug resistance 1 (Pfmdr1) genes conferring resistance to either 4-amino-quinoleine, mefloquine, halofanthrine and quinine have been documented. Mutations in the Pfdhfr and Pfdhps genes involved in sulfadoxine-pyrimethamine are also on the rise. No mutation associated with artemisinin resistance has been recorded. Sixteen anopheline species contribute to malaria parasite transmission with six recognized as major vectors: An. gambiae, An. coluzzii, An. arabiensis, An. funestus, An. nili and An. moucheti. Studies conducted so far, indicated rapid expansion of DDT, pyrethroid and carbamate resistance in An. gambiae, An. coluzzii, An. arabiensis and An. funestus threatening the performance of LLINs. This review highlights the complex situation of malaria in Cameroon and the need to urgently implement and reinforce integrated control strategies in different epidemiological settings, as part of the substantial efforts to consolidate gains and advance towards malaria elimination in the country
Diversity and behavioral activity of Anopheles mosquitoes on the slopes of Mount Cameroon.
BACKGROUND: Malaria remains endemic in Cameroon, with heterogeneous transmission related to eco-climatic variations, vector diversity and spatial distribution. The intensification of malaria prevention and control through the free distribution of insecticide-treated nets in recent years may have altered the composition, geographic distribution and natural infection rate of Anopheles species, with implications for malaria transmission dynamics. The present study seeks to assess the vectorial diversity, dynamics and infectivity across different seasons and altitudes in relationship to parasite prevalence around the slopes of Mount Cameroon, southwestern region. METHOD: Mosquitoes were sampled (indoors and outdoors) in 11 eco-epidemiological settings at low (18-197 m), intermediate (371-584 m) and high (740-1067 m) altitude by nightly human landing catches. The mosquitoes were identified morphologically and Anopheles gambiae sibling species identified by PCR. Parity status was ascertained by examining the ovaries and the entomological inoculation rates (EIR) determined by Plasmodium falciparum circumsporozoite antigen ELISA of the head-thorax. The prevalence of Plasmodium infection across target communities was assessed using rapid diagnostic tests. RESULTS: A total of 7327 (18.0 mosquitoes/trap/night) mosquitoes were trapped, mainly during the rainy season (5678, 77.5%) and at low altitude (3669, 50.1%). Anopheles spp. (5079, 69.3%) was the most abundant genera and An. gambiae complex (2691, 36.7%) the major vector, varying with altitude (χ2 = 183.87, df = 8, P < 0.001) and season (χ2 = 28.14, df = 4, P < 0.001). Only An. gambiae (s.s.) was identified following molecular analysis of An. gambiae complex siblings. The overall biting peak for An. gambiae complex was 2-3 a.m. Anopheles cinctus was the most abundant secondary vector in the area. The average EIR in the area was 2.08 infective bites per person per night (ib/p/n), higher at low (2.45 ib/p/n) than at intermediate altitude (1.39 ib/p/n) and during the rainy (1.76 ib/p/n) compared to the dry season (0.34 ib/p/n). Anopheles funestus was most infectious overall (28.1%, 16/57) while An. gambiae had the highest inoculation rates averaging 1.33 ib/p/n. Most Anopheles species across all altitudes and seasons were parous, highest in communities with the highest proportion of malaria parasite infections. CONCLUSION: Anopheles gambiae (s.s.) remains the major malaria vector in the area and An. cinctus possibly a secondary vector of the disease in the slopes of Mt. Cameroon. The seasonal and altitudinal effects on the distribution of these mosquitoes may have implications for the transmission of malaria and its control strategies in the area. Regular monitoring of the bionomics of local Anopheles vector species and targeted control interventions in the 'hotspots' is necessary to curb the prevalence of the infection and incidence of disease
Asymptomatic Plasmodium falciparum infections and determinants of carriage in a seasonal malaria chemoprevention setting in Northern Cameroon and south Senegal (Kedougou).
BACKGROUND: Among the several strategies recommended for the fight against malaria, seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine combination (SPAQ) targets children 3 months to 5 years in Sahel regions of Africa to reduce mortality and mortality. Since SMC with SPAQ is administered to symptoms-free children for prevention of malaria, it is anticipated that a proportion of asymptomatic parasitaemic children will also be treated and may result in a drop in both the overall population prevalence of asymptomatic malaria infections, subsequent risk of symptomatic malaria infections and transmission. Age-specific carriage of asymptomatic Plasmodium spp. infections (API) was evaluated in target children and adults in Cameroon and Senegal, prior to the 2018 SMC campaign in both countries. METHODS: A baseline household survey was carried out in August 2018 in two areas in Cameroon and one in Senegal just before the beginning of distribution of SPAQ for SMC. The survey included collection of fingerpick blood for malaria rapid diagnostic testing (RDT) and administration of a pre-tested questionnaire on demographics and malaria risk factors to participants. The age-specific prevalence of API in all study sites was analysed, first as a distribution of RDT-positives in 5-year age categories and secondly, with age as a continuous variable in the whole sample, using the Wilcoxon rank sum test. Risk factors for carriage of asymptomatic infections were examined using logistic regression analysis in STATA v.16 and Rv4.1.2. RESULTS: In total, 6098 participants were surveyed. In Cameroon, overall prevalence of API was 34.0% (32.1-36.0%) in Adamaoua, and 43.5% (41.0-45.7%) in the North. The median age of RDT positivity was higher in Senegal: 11 years (IQR 7-16) than in Cameroon-Adamaoua: 8 years (4-17) and North: 8 years (4-12) and significantly different between the three study regions. In all three study sites, asymptomatic carriage was significantly higher in the older age group (5-10 in Cameroon, and 7-14 in Senegal), compared to the younger age group, although the median age of participants was lower among RDT-negatives in the North compared to RDT-positives. Health area, gender and last infection within past year significantly confounded the relationship between age and parasite carriage in Adamaoua and Senegal but not in North Cameroon. Absence of bed net and previous infection within one month of the survey all independently predicted carriage of asymptomatic parasites in multivariate regression analysis. CONCLUSION: Under five years asymptomatic Plasmodium infection in northern Cameroon prior to SMC season remained high in 2018, irrespective of history of SMC implementation in the study areas in Cameroon. Compared to Adamaoua, peak asymptomatic malaria parasite rate was observed in children 5-10 years, which is out of the SMC target age-range. Health area, last infection within the past month and to a lesser extent gender affected the association between age and asymptomatic carriage in all sites except the North region of Cameroon, indicating wide heterogeneity in risk of malaria among the general population in that geography. Follow-up studies designed to measure SMC effects in Cameroon are warranted as it may become necessary to extend age of SMC eligibility to 10 years, as is practiced in Senegal
High efficacy of microbial larvicides for malaria vectors control in the city of Yaounde Cameroon following a cluster randomized trial
The rapid expansion of insecticide resistance and outdoor malaria transmission are affecting the efficacy of current malaria control measures. In urban settings, where malaria transmission is focal and breeding habitats are few, fixed and findable, the addition of anti-larval control measures could be efficient for malaria vector control. But field evidences for this approach remains scarce. Here we provide findings of a randomized-control larviciding trial conducted in the city of Yaoundé that support the efficacy of this approach. A two arms random control trial design including 26 clusters of 2 to 4 km2 each (13 clusters in the intervention area and 13 in the non-intervention area) was used to assess larviciding efficacy. The microbial larvicide VectoMax combining Bacillus thuringiensis var israelensis (Bti) and Bacillus sphaericus in a single granule was applied every 2 weeks in all standing water collection points. The anopheline density collected using CDC light traps was used as the primary outcome, secondary outcomes included the entomological inoculation rate, breeding habitats with anopheline larvae, and larval density. Baseline entomological data collection was conducted for 17 months from March 2017 to July 2018 and the intervention lasted 26 months from September 2018 to November 2020. The intervention was associated with a reduction of 68% of adult anopheline biting density and of 79% of the entomological inoculation rate (OR 0.21; 95% CI 0.14–0.30, P < 0.0001). A reduction of 68.27% was recorded for indoor biting anophelines and 57.74% for outdoor biting anophelines. No impact on the composition of anopheline species was recorded. A reduction of over 35% of adult Culex biting densities was recorded. The study indicated high efficacy of larviciding for reducing malaria transmission intensity in the city of Yaoundé. Larviciding could be part of an integrated control approach for controlling malaria vectors and other mosquito species in the urban environment
Genetic Diversity of Polymorphic Vaccine Candidate Antigens (Apical Membrane Antigen-1, Merozoite Surface Protein-3, and Erythrocyte Binding Antigen-175) in Plasmodium falciparum Isolates from Western and Central Africa
The malaria vaccine candidate antigens erythrocyte binding antigen 175 (EBA-175), merozoite surface protein 3 (MSP-3), and apical membrane antigen (AMA-1) from Plasmodium falciparum isolates from countries in central and west Africa were assessed for allelic diversity. Samples were collected on filter paper from 600 P. falciparum-infected symptomatic patients in Cameroon, Republic of Congo, Burkina Faso, Ghana, and Senegal and screened for class-specific amplification fragments. Genetic diversity, assessed by mean heterozygosity, was comparable among countries. We detected a clinical increase in eba 175 F-allele frequency from west to east across the study region. No statistical difference in msp-3 allele distribution between countries was observed. The ama-1 3D7 alleles were present at a lower frequency in central Africa than in West Africa. We also detected little to no genetic differentiation among sampling locations. This finding indicates that, at least at the level of resolution offered by restriction fragment length polymorphism analysis, these antigens showed remarkable genetic homogeneity throughout the region sampled, perhaps caused by balancing selection to maintain a diverse array of antigen haplotyes
Spatial and temporal development of deltamethrin resistance in malaria vectors of the Anopheles gambiae complex from North Cameroon.
The effectiveness of insecticide-based malaria vector control interventions in Africa is threatened by the spread and intensification of pyrethroid resistance in targeted mosquito populations. The present study aimed at investigating the temporal and spatial dynamics of deltamethrin resistance in An. gambiae s.l. populations from North Cameroon. Mosquito larvae were collected from 24 settings of the Garoua, Pitoa and Mayo Oulo Health Districts (HDs) from 2011 to 2015. Two to five days old female An. gambiae s.l. emerging from larval collections were tested for deltamethrin resistance using the World Health Organization's (WHO) standard protocol. Sub samples of test mosquitoes were identified to species using PCR-RFLP and genotyped for knockdown resistance alleles (Kdr 1014F and 1014S) using Hot Ligation Oligonucleotide Assay (HOLA). All the tested mosquitoes were identified as belonging to the An. gambiae complex, including 3 sibling species mostly represented by Anopheles arabiensis (67.6%), followed by Anopheles coluzzii (25.4%) and Anopheles gambiae (7%). Deltamethrin resistance frequencies increased significantly between 2011 and 2015, with mosquito mortality rates declining from 70-85% to 49-73% in the three HDs (Jonckheere-Terstra test statistic (JT) = 5638, P< 0.001), although a temporary increase of mortality rates (91-97%) was seen in the Pitoa and Mayo Oulo HDs in 2012. Overall, confirmed resistance emerged in 10 An. gambiae s.l. populations over the 24 field populations monitored during the study period, from 2011 to 2015. Phenotypic resistance was mostly found in urban settings compared with semi-urban and rural settings (JT = 5282, P< 0.0001), with a spatial autocorrelation between neighboring localities. The Kdr 1014F allelic frequencies in study HDs increased from 0-30% in 2011 to 18-61% in 2014-2015 (JT = 620, P <0.001), especially in An. coluzzii samples. The overall frequency of the Kdr 1014S allele was 0.1%. This study revealed a rapid increase and widespread deltamethrin resistance frequency as well as Kdr 1014F allelic frequencies in An. gambiae s.l. populations over time, emphasizing the urgent need for vector surveillance and insecticide resistance management strategies in Cameroon
- …
