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Abstract

Background: As part of a study to determine the impact of insecticide resistance on the effectiveness of long-
lasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic
behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite
transmission.

Methods: For four consecutive years (2011-2014), annual cross-sectional sampling of adult mosquitoes was
conducted during the peak malaria season (September-October) in three health districts in northern Cameroon.
Mosquitoes sampled by human landing catch and pyrethrum spray catch methods were morphologically identified,
their ovaries dissected for parity determination and Anopheles gambiae siblings were identified by molecular assay.
Infection with P. falciparum and blood meal source in residual fauna of indoor resting anopheline mosquitoes were
determined by enzyme-linked-immunosorbent assays.

Results: Anopheles gambiae (sensu lato) (s.l) comprised 18.4% of mosquitoes collected with An. arabiensis
representing 66.27% of the sibling species. The proportion of An. rufipes (2.7%) collected was high with a human-
biting rate ranging between 0441 and 11.083 bites/person/night (b/p/n) and an anthropophagic rate of 15.36%.
Although overall the members of An. gambiae complex were responsible for most of the transmission with
entomological inoculation rates (EIR) reaching 1.221 infective bites/person/night (ib/p/n), An. arabiensis and An.
coluzzii were the most implicated. The roles of An. funestus, An. pharoensis and An. paludis were minor. Plasmodium
falciparum circumsporozoite protein rate in Anopheles rufipes varied from 0.6 to 5.7% with EIR values between 0.010
and 0481 ib/p/n.
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effective vector management strategies.

Conclusions: The study highlights the epidemiological role of An. rufipes alongside the members of the An.
gambiae complex, and several other sympatric species in human malaria transmission during the wet season in
northern Cameroon. For the first time in Cameroon, An. rufipes has been shown to be an important local malaria
vector, emphasising the need to review the malaria entomological profile across the country as pre-requisite to

Keywords: Malaria, Transmission, Anopheles, Local vectors, Northern Cameroon

Background

The discovery at the turn of the nineteenth century
that malaria was transmitted by mosquitoes initiated
an outburst of interest in the description and implica-
tion of various species in malaria transmission [1].
Human plasmodial species are transmitted by mosqui-
toes of the genus Anopheles, which includes 465 for-
mally recognised species [2]. Amongst these, over 140
species have been identified in Africa [3, 4], of which
less than 20 have been shown to support the develop-
ment and propagation of human Plasmodium species
[5]. However, their relative contribution to malaria
transmission greatly varies depending on their behav-
iour (host seeking, feeding and resting) and densities as
influenced by environmental conditions. These differ-
ences in Anopheles behaviour and density, along with
vector longevity, are key factors driving malaria transmis-
sion and epidemiological patterns observed across Africa
[6, 7]. Therefore, in areas with numerous potential vec-
tors, an in-depth understanding of vectors dynamics is
fundamental to designing interventions tailored to the
local eco-epidemiological situation [8, 9].

The malaria vectorial system in Cameroon is very com-
plex. To date, over 50 Anopheles species have been de-
scribed which are heterogeneously distributed across the
eco-epidemiological zones of the country. Fifteen species
have been demonstrated to support the development and
spread of human Plasmodium spp.. An. gambiae Giles,
1902; An. funestus Giles, 1900; An. arabiensis Patton, 1905;
An. nili (Theobald, 1904) and An. moucheti Evans, 1925
are classified as major vectors [10]. The other species
amongst which are An. pharoensis and An. paludis play
only a minor localised secondary role in transmission [11-
14], and they may help to augment or extend the malaria
transmission period [15, 16]. For the first time we report
the importance of An. rufipes (Gough, 1910), as vector of
human Plasmodium in Cameroon. Although a few studies
have attempted to associate An. rufipes with human mal-
aria transmission [17, 18], this species has generally been
reported to be zoophilic [3, 4] with high densities in rice-
growing areas [19, 20]. Even though this species has often
been collected landing on human volunteers in several
studies in Cameroon [21-23], its role in malaria transmis-
sion has never been investigated.

Methods

Study site and design

For four consecutive years (2011-2014), annual cross-
sectional sampling of adult Anopheles mosquitoes was
conducted in Northern Cameroon during the peak mal-
aria season (September-October) in the health districts
(HD) of Pitoa (9°23'0"N, 13°32'0"E), Garoua (9°18'0"N, 13°
24' 0" E) and Oulo Mayo (9°7'34"N, 13°37'20"E) (Fig. 1). A
total of 38 villages (12, 17 and 9 villages from each HD,
respectively) were included in the assessment. Pitoa is a
peri-urban area with about 108,611 inhabitants. The main
economic activity is farming with major crops cultivated
being rice, cotton, millet, sorghum and maize. On the
other hand, Garoua is an urban area with a population of
around 316,957 with rural suburbs that depend almost
entirely on agriculture for subsistence. Mayo Oulo is pre-
dominantly rural, highland area with around 91,501 in-
habitants. Unlike in the suburbs of Garoua where typically
corn, tomatoes and eggplant are grown, in Mayo Oulo
major crops cultivated are maize, beans and peanuts. All
three areas have a Sahelian-type climate with an annual
average rainfall of 700-1,000 mm and annual average
temperature of 26-33 °C. Anopheles gambiae (s.l.) is the
major malaria vector along with typical sahelian vectors
including An. funestus and An. pharoensis, and Plasmo-
dium falciparum is the most prevalent malaria parasite
species [24, 25].

Field sampling of adult mosquitoes

Mosquitoes were sampled using both the human landing
catch (HLC) and pyrethrum spray collection (PSC)
methods. Mosquito collections took place concurrently
in all 38 villages within the three HDs. HLCs were per-
formed for two consecutive nights from 18:00-06:00 h.
Mosquitoes were collected indoors and outdoors in
three randomly selected houses (at least 50 m apart) in
each village each night with rotation between houses at
different locations. A team of four trained volunteers per
house (two working during the first half of the night and
the others during the second half of the night) made the
collection, with one sitting inside the house and the
other on the veranda collected female mosquitoes as
they landed on exposed lower limbs. The mosquitoes
were sorted by genus and the anophelines identified
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Fig. 1 Map of the North region of Cameroon showing the study Health Districts (1, 5 and 6)

Northern region Health District
1 - Mayo Oulo

2 - Guider

3 - Figuil

4 - Gaschiga
5 - Pitoa

6 — Garoua-
7 - Bibémi

8 - Ngong

9 - Lagdo

10 - Rey-Bouba
11 - Poli

12 - Tcholliré
13 - Touboro

morphologically using the morphological identification
keys of Gillies & de Meillon [3] and Gillies & Coetzee [4].
The ovaries of a proportion of unfed mosquitoes were
dissected for parity determination [26]. All dissected and
those undissected mosquitoes were individually stored in
tubes containing silica gel for subsequent laboratory ana-
lyses. PSCs for indoor resting mosquitoes were performed
once in the morning (06:00-08:00 h) as described by
Service et al. [27], and the mosquitoes were identified
morphologically with their physiological status recorded.
Specimens were individually stored desiccated in tubes for
later laboratory analyses.

Laboratory analysis of Anopheles spp. mosquitoes

A portion of specimens from each collection method
belonging to the Anopheles gambiae complex were fur-
ther identified using molecular assays. DNA from the
legs and wings of each individual specimen was ex-
tracted [28] and PCR amplification was conducted to de-
termine species [29]. The head and thorax portion of
each Anopheles female collected was separated from the
rest of the body, homogenized in grinding buffer (0.5%
Casein, 0.1 N NaOH, 1 x PBS) and examined for the
presence of Plasmodium falciparum circumsporozoite
protein (CSP) by enzyme-linked-immunosorbent assay
(ELISA) [30, 31]. This was to avoid cross reactivity with
animal blood as reported previously [32]. To minimize
false positive CSP ELISA, only high absorbance readings
were considered (mean plus three standard deviations of
negative controls). Blood-fed females resting indoors
were screened for the source of blood meal by ELISA as

described by Beier et al. [33] and modified by Lardeux et
al. [34]. Monoclonal antibodies against human, cow, pig
and sheep blood were used.

Data analysis

Man biting rate (ma) was calculated as the average num-
ber of bites from Anopheles species received per person
per night of collection. Infection Rate (IR) was calculated
as the proportion of Anopheles species tested positive for
P. falciparum CSP by ELISA, while the Human Blood
Index (HBI) represented the proportion of Anopheles
species identified by ELISA to have fed on human blood.
The Entomological Inoculation Rate (EIR) was determined
as the product of the Infection Rate (IR) and the man
biting rate (ma). Data were analysed using SPSS Statistics
17.0. A Chi-square test was used to determine variable
significance and the threshold for statistical significance
was set at P < 0.05.

Results

Mosquito composition and anopheline density

A total of 80,689 mosquitoes were collected by HLC,
comprising 61.7% Culex spp., 26.7% Anopheles spp.,
11.1% Mansonia spp., 0.3% Aedes spp. and 0.2% Coquil-
lettidia spp. Overall 21,571 Anopheles mosquitoes were
identified morphologically (Table 1), of which there were
14,858 An. gambiae (s.l.), 2,169 An. rufipes, 1,802 An.
Pharoensis, 1,259 An. funestus and 659 An. paludis. The
remaining 1% (824) of anopheline species were scarce
and their occurrence varied greatly between the villages
and health districts (Table 1).
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Table 1 Composition and abundance of mosquitoes by species
and study health district

Species Garoua Pitoa Mayo Oulo  Total
% (n) % (n) % (n) % (n)
Anopheles spp.
An. gambiae (s.l.) 14.7 (5138) 227 (7,774) 170 (1946) 184 (14,858)
An. rufipes 0.7 (234) 2.1 (722) 106 (1213) 2.7 (2,169)
An. pharoensis 2.8 (965) 2.0 (699) 1.2 (138) 2.2 (1,802)
An. funestus 1.4 (496) 1.7 (591) 1.5(172) 16 (1,259)
An. paludis 0.8 (270) 1.0 (357) 03 (32 0.8 (659)
0.1 (29 14 (479) 28 (316) 1.0 (824)
Other Anopheles spp.
Total 1 204 (7,132)  31.0(10622) 334 (3817) 267 (21,571)
Culicines
Culex spp. 745 (26,111) 500 (17,111) 573 (6554) 61.7 (49,776)
Mansonia spp. 46 (1,618) 18.8 (6434) 7.8 (886) 11.1 (8,938)
Aedes spp. 0.1 (20) 0.1 (49 1.5071) 0.3 (240)
Coquillettidia spp. 0.4 (156) 00 (7) 0.0 (1) 02 (164)
Total 2 796 (27,905) 69.0 (23,601) 666 (7612) 733 (59,118)
Total 1+2 100 (35,037) 100 (34,223) 100 (11,429) 100 (80,689)

Abbreviation: n number collected

Molecular identification of Anopheles gambiae siblings

A total of 1,002 An. gambiae (s.l.) collected by HLC be-
tween 2011 and 2014 were identified by molecular methods.
There were 664 (66.27%) An. arabiensis, 258 (25.75%) An.
coluzzii and 80 (7.98%) An. gambiae (s.s.). Stratifying by
health district, there were a total of 314 Anopheles gam-
biae (s.l.) tested in Mayo Oulo amongst which there were
83.12, 8.28 and 8.60% of An. arabiensis, An. coluzzii and
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An. gambiae (s.s.), respectively. In Garoua, 426 were ana-
lysed comprising 55.28, 38.30, and 6.42% of An. arabiensis,
An. coluzzii and An. gambiae (s.s.), respectively. Meanwhile
in Pitoa, out of 252 An. gambiae (s.l.) identified, there were
64.29% An. arabiensis, 25.79% An. coluzzii and 9.92% An.
gambiae (s.s.). Thus, Anopheles arabiensis was the most
abundant of the An. gambiae (s.l) siblings collected by
HLC in all three health districts, followed by An. coluzzii
(Fig. 2). Based on analyses of anophelines collected by PSC,
a total of 888 anopheles species comprising 472 (53.15%)
An. gambiae (s.1.), 364 (40.99%) An. funestus and 52 (5.86%)
An. rufipes were collected. Amongst the members of the
An. gambiae (s.l.), An. arabiensis (77.97%) was the most
abundant, followed by An. coluzzii (16.95%) and An. gam-
biae (5.08%).

Night biting rate and biting cycles

The human-biting rates varied by species and health
district. While peak biting rates for An. gambiae (s.l.)
were recorded in Garoua and Pitoa health districts, in
Mayo Oulo An. rufipes had the highest biting rates in
2012 and 2013 at 11.083 b/p/n and 7.852 b/p/n respect-
ively (Table 2). The human-biting rate of An. funestus,
An. pharoensis and An. paludis were higher in Pitoa
HD compared to Garoua and Mayo Oulo HD. There
was no preference to the place of bite for the main
Anopheles species as they could bite indoor as well as
outdoor (Fig. 3).

Comparative analysis of the biting trends by hour of
the night between An. rufipes and the major vector An.
gambiae (s.l.) showed great variation in the peak
aggressivitiy between the health districts (Fig. 4). While

90
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Garoua Pitoa

W An.arabiensi: uAn. b

Health district

g iae s.s (Form M (An. coluzzi))

Fig. 2 Distribution of members of Anopheles gambiae complex in the three study health districts
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Table 2 Average man biting rate (number of bites per person per night) for Anopheles species in the study sites from 2011 to 2014

Anopheles species Garoua Pitoa Mayo Oulo

or complex 2011 2012 2013 2014 2011 2012 2013 2014 2011 2012 2013 2014
An. gambiae (s.1) 20,14 8.90 17.12 421 3974 2426 2211 2188 3936 347 6.24 1116
An. funestus 1.14 0.77 192 102 447 201 094 090 1.89 128 104 1.00
An. pharoensis 623 012 272 083 422 065 288 2,05 206 008 106 067
An. paludis 003 1.19 112 032 181 194 128 004 003 0.11 048 033
An. rufipes 066 066 044 054 549 357 047 051 842 11.08 7.85 1083

Anopheles gambiae (s.l.) was as most aggressive between
24:00 and 2:00 h in Pitoa and Garoua, in Mayo Oulo its
peak activity was earlier, between 22:00 and 24:00 h. On
the other hand, An. rufipes was most aggressive between
20:00 and 24:00 h in Garoua, 22:00 and 24:00 h in Pitoa,
and in the mountainous Mayo Oulo, it was most active
between 24:00 and 06:00 h (Fig. 4).

Parity rates

Out of a total of 10,225 ovaries of Anopheles species dis-
sected, 4,438 were parous, giving an overall parity rate of
43.40%. The parity rate was higher for An. gambiae (s.l.),
46.92% (45.77-48.08), compared to An. funestus, An.
rufipes, An. pharoensis and An. paludis with parity rates
of 37.92, 36.94, 31.12 and 27.67%, respectively (Table 3).
With regard to the health district, although generally the
highest parity rates were observed in Pitoa, the difference
in parity rate between HDs and anopheline species was
not significant (y* = 6.62, df=8, P=0.58). However, there
was a significant difference in An. gambiae (s.l.) parity

rates between the health districts (Xz =842, df=2, P=
0.0145), which could directly impact on their relative con-
tribution to transmission in the HDs.

Human blood index (HBI)

In total, the blood meal source of 472 (53.15%) out of
the 888 blood-fed Anopheles species tested were con-
firmed. Of these, 21.62% were solely of human origin,
15.99% were from cow and 1.80% from pig. However,
there were cases of mixed blood from varied sources
such as cow and sheep (8.33%), human and pig (2.48%),
and cow, pig and sheep (1.35%). Amongst the members
of An. gambiae complex, Anopheles gambiae was observed
to feed essentially on human blood, while An. arabiensis
and An. coluzzii, alongside other species like An. funestus
and An. rufipes fed both on humans and a wide range of
domestic animals. About 47% of the source of blood meal
from fed Anopheles species was not identified, probably due
to the lack of monoclonal antibodies to test for blood meals
from several other animal species commonly found in those
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localities (horse, goat, donkey and dog) (Fig. 5). Generally,
Anopheles gambiae was the most anthropohilic of the
Anopheles species tested. Also, it had the highest human
blood index (HBI) (66.67%) amongst the members of the
An. gambiae complex (* = 23.36, df =2, P < 0.05) followed
by An. coluzzii (31.25%) and An. arabiensis (26.36%). The
HBI for An. rufipes was 15.38% while An. funestus had the
least (12.64%).

Infectivity and entomological inoculation rate (EIR)

Details of the EIR by vector species and health district
are presented in Tables 4 and 5. Overall, the CSP rates
varied from 0.8 to 9.1% (Table 4). Irrespective of the year
and health district, data indicated that An. gambiae (s.l.)
was responsible for most of the Plasmodium transmis-
sion. In Mayo Oulo where the highest number of An.
rufipes was collected, this species accounted for EIR
values ranging from 0.286 to 0.481 infective bites per
person per night (ib/p/n) in 2012 and 2011, respectively.
However, the highest EIR for An. gambiae (s.l.) (1.52 ib/p/n)

was obtained in 2011 (Fig. 6). The highest EIR for An.
funestus and An. pharoensis were 0.032 ib/p/n in 2012
and 0.044 ib/p/n 2013, respectively. In Pitoa health dis-
trict, An. gambiae (s.l.) was also responsible for most of the
transmission having EIR rates between 0.280 ib/p/n in 2014
and 1.368 ib/p/n in 2011. While the EIR for Anopheles
rufipes ranged from 0.022 to 0.222 ib/p/n, peak values
for An. funestus, An. pharoensis and An. paludis were
0.139 ib/p/n, 0.200 ib/p/n and 0.052 ib/p/n, respectively
during the 4 years. The lowest EIR values were obtained
in Garoua HD. Here, the EIR for An. gambiae (s.l.) varied
between 0.079 ib/p/n in 2014 and 0.340 ib/p/n in 2011.
For An. pharoensis the highest EIR was 0.090 ib/p/n
in 2011.

With regards to the members of the Anopheles gam-
biae complex, although in general An. arabiensis re-
corded the highest EIR, with peak values of 0.029 ib/p/n
in 2013 in Garoua, 0.028 ib/p/n in 2011 in Pitoa and
0.093 ib/p/n in 2011 in Mayo Oulo, the difference was
not significant when compared to An. colluzii in Garoua

Table 3 Parity rates of Anopheles vectors of malaria in the three study health districts

Health district An. gambiae (s.l) An. funestus An. pharoensis An. paludis An. rufipes
Garoua No. dissected (No. parous) 2,119 (765) 449 (177) 276 (68) 69 (18) 80 (25)

Parous rate (%) (95% Cl) 36.10 (34.08-38.17) 3942 (35.01-44.01) 2464 (19.93-30.05) 26.09 (17.19-37.51) 31.25 (22.15-42.07)
Pitoa No. dissected (No. parous) 3,856 (2,207) 367 (132) 342 (124) 172 (49) 178 (84)

Parous rate (%) (95% Cl) 57.24 (55.67-58.79) 3597 (31.23-41.00) 36.26 (31.34-41.48) 2849 (22.27-35.65) 47.19 (39.99-54.51)
Mayo Oulo No. dissected (No. parous) 1,184 (387) 136 (52) 60 (19) 12 (3) 925 (328)

Parous rate (%) (95% Cl) 32.69 (30.07-3541) 3824 (30.50-46.62) 3167 (21.31-44.23) 25.00 (8.89-53.23) 3546 (32.44-38.60)
Total No. dissected (No. parous) 7,159 (3,359) 952 (361) 678 (211) 253 (70) 1,183 (437)

(

Parous rate (%) (95% Cl)

46.92 (45.77-48.08)

37.92 (34.89-41.04)

31.12 (27.75-34.70)

27.67 (22.52-33.48)

36.94 (34.24-39.73)

Note: The difference in parity rate between health districts and anopheline species was not significant (x> = 6.62, df=8, P=0.58)
Abbreviation: Cl confidence interval
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and Pitoa (y* = 0.014, df =3, P> 0.05). However, An. gam-
biae contributed to transmission mainly in 2011 in Mayo
Oulo with an EIR of 0.019 ib/p/n and in 2013 in Garoua
with an EIR of 0.01 ib/p/n (Table 5).

Discussion

The identification and incrimination of vectors in mal-
aria transmission as well as their relative contribution to
transmission is critical for the implementation of an

Table 4 Summary of overall entomological data

efficient malaria control strategy. Some control pro-
grammes like the Garki project, failed because of the
erroneous identification of the vectors involved in mal-
aria transmission, and insecticide resistance in An. ara-
biensis in Nigeria [35, 36]. To date, malariologists have
paid little or no attention in most areas to An. rufipes as
this species has generally exhibited high zoophilic ten-
dencies. Elsewhere, the abundance of this species was
found to peak particularly at the end of the rainy season

Health Anopheline 2011 2012 2013 2014

district species CSP+(m IR ma ER CSP+() IR ma ER CSP+() IR ma ER CSP+( R ma  ER

Garoua  An gambige 15 (888) 0017 20137 0340 8(661) 0012 8902 0.108 32(1408) 0023 17.118 0389 6(318) 0019 4206 0079
An. funestus 149 0020 1137 0023 1(6) 0018 0775 0014 4(158) 0025 1922 0049 2(70) 0029 1020 0029
An. pharoensis 5 (344) 0015 6225 0090 0(12) 0 0118 0 4(230) 0017 2716 0047 1(14) 0071 0833 0060
An. rufipes 10Q1) 0048 0657 0031 1(39) 0026 0657 0017 1(43) 0023 0441 0010 0(0) - 0539 -
An. paludis 0 (0) 0 0029 -  2(51) 0039 1186 0047 3(88) 0034 1118 0038 0() 0 0324 0

Pitoa An. gambige 39 (1,133) 0034 39736 1368 26 (1,045) 0025 24264 0604 14 (396) 0035 22111 0782 11(859) 0013 21.880 0280
An. funestus  5(161) 0031 4472 0139 2(88) 0023 2014 0046 1(36) 0028 0944 0026 0(31) O 09 0O
An. pharoensis 8 (169) 0047 4222 0200 0(31) 0 0653 0 2(54) 0037 2875 0106 0(10) O 205 O
An.rufipes 4(99) 0040 5486 0222 1(164) 0006 3569 0022 1(19) 0053 0472 0025 0(14) 0 051 0
An.paludis  2(74) 0027 1806 0049 0(60) 0 1944 0 2(49 0041 1278 0052 0(0) - 004 -

Mayo Oulo An. gambige 19 (492) 0039 39361 1520 1(122) 0008 3472 0028 8(157) 0051 6241 0318 0(24) 0 11163 0
An. funestus  2(22) 0091 1889 0172 1(40) 0025 1278 0032 1(33) 0030 1037 0031 0(0) - 1 -
An. pharoensis 0 (36) 0 205 - 0(Q) 0 0083 0  1(24) 0042 1056 0044 1(29) 0034 0667 0023
An.rufipes  2(35) 0057 8417 0481 4(155 0026 11083 0286 2(49) 0041 7852 0320 0(0) - 10833 -
An. paludis 0 (0) 0 0028 - 00 0 0111 0 003 0 0481 0 00 - 0333 -

Abbreviations: CSP+ number of mosquitoes positive to CSP, CSP circumsporozoite protein, EIRentomological inoculation rate (infectious bites/person/night, IR
infection rate, ma man biting rate (bites/person/night), n number of mosquitoes examined by CSP ELISA
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Table 5 Implication of members of Anopheles gambiae complex in malaria transmission

Health Anopheline 2011 2012 2013 2014

district species CSP+(m) ma IR ER CSP+() ma IR ER CSP+(n) ma IR ER CSP+(m) ma IR ER

Garoua  An.arabiensis 1(78) 076 001 001 1(31) 03 003 001 3(75 074 004 0029 1(7) 007 0.14 00098
An. coluzzii 149 048 002 001 0(3) 023 0 O 1(42) 041 002 001 0(18) 018 0 0
An.gambige 0(11) 011 0 0 00) 007 0 0 102 002 05 001 0(4) 004 0 0

Pitoa An. arabiensis 2 (113) 157 002 0028 1(67) 093 001 0014 1(86) 119 001 0014 1(71) 07 001 00098
An. coluzzii 1670 093 001 0014 1(33) 046 003 0014 0(15 021 0 0 1200 02 005 00098
An.gambige 0(14) 019 0 0 00170 024 0 0 0(6) 008 0 O 0(15 015 0 0

Mayo Oulo  An. arabiensis 5 (83) 154 006 0093 2 (6) 011 033 0037 2(17) 031 012 0037 0(3) 006 0 0
An. coluzzii 0 (8) 015 0 0 01 002 0 0 003) 006 0 O 00 0o - -
An. gambige 1 (5) 009 02 0019 0(1) 002 0 0 0 004 0 0 00 004 0 0O

Abbreviations: CSP+ number of mosquitoes positive to CSP, CSP circumsporozoite protein, EIR entomological inoculation rate (infectious bites/person/night, IR
infection rate, ma man biting rate (bites/person/night), n number of mosquitoes examined by CSP ELISA

in rice-growing areas, with very short periods of malaria
outbreak resulting [17-20]. Amnopheles rufipes breed
commonly in small collections of water such as residual
puddles in river beds, hoof prints of cattle, swamps and
rice irrigation schemes, with the larvae staying close to
the borders and among vegetation. This is important as
cattle rearing and rice cultivation and irrigation are com-
mon practices in the study sites, which usually experi-
ence floods with long retention of surface water during
the wet season. As part of a study to determine the
impact of insecticide resistance on the effectiveness of
vector control tools like the LLIN in the north of
Cameroon, the observed unexpectedly high density and

anthropophilic behaviour of this species incited our curi-
osity to investigate its role in P. falciparum transmission.
For the first time in Cameroon, An. rufipes has been
identified as an important local vector of P. falciparum.
A few earlier studies have described this species as
weakly anthropophilic [18] and potentially involved in
malaria transmission [3, 37, 38]. More recently in Bur-
kina Faso, Plasmodium was detected in An. rufipes
oocyts, further implicating it as a potential vector of
human malaria parasites [39]. Thus, An. rufipes may be
a more important and wider spread vector than previ-
ously thought and therefore this is important for malaria
elimination strategies.
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Fig. 6 Night entomological inoculation rates of Anopheles species by year and health district. Abbreviation: ib/p/n, infective bites per person

An.  An. rufipesAn. paludis,  An. An.  An. rufipes An. paludis

gambiae funestus pharoensis

Pitoa Mayo oulo




Tabue et al. Parasites & Vectors (2017) 10:22

In Cameroon, five major malaria vectors (An. gambiae,
An. funestus, An. arabiensis, An. nili and An. moucheti)
have been described [10] with nine secondary vectors of
local importance (An. paludis, An. carnevalei, An. cous-
tani, An. marshallii, An. ziemanni, An. pharoensis, An.
hancocki, An. wellcomei and An. ovengensis). Anopheles
rufipes is now added to this plethora of vectors, further
complicating the malaria vectorial system in the country.
In the past, the role of this species in malaria transmis-
sion was largely neglected due its strong zoophilic ten-
dency which leads to claims of its lack of importance.
Moreover, An. rufipes had high parous rate wherever it
was collected, suggesting the propensity to survive lon-
ger and being able to maintain and even extend P.
falciparum transmission beyond the normal duration.

The vast plethora of Anopheles species observed in
this study could be linked to the diversity of existing bio-
topes that enhance the proliferation of such species
within the health districts. Anopheles arabiensis, An.
coluzzii and An. gambiae (s.s.) were the An. gambiae
(s.L.) siblings found with An. arabiensis being the most
frequently encountered species. The relative abundance
of An. gambiae (s.s.) and An. arabiensis varied across the
years and by health districts with twice as many An. ara-
biensis. This is unlike observations by Robert et al. [40]
in southern Burkina where the density of An. gambiae
(s.s.) was nine-fold greater than that of An. arabiensis
among residual endophilic mosquitoes. This difference
however, might be due to differences in the microenvi-
ronments and the methods of collection. Both species
are typical malaria vectors of the sahelian zone [41], with
their densities peaking especially during the rainy sea-
son. As observed with An. rufipes in this study, species
like An. pharoensis, An. funestus and An. coustani have
been shown to contribute significantly to malaria trans-
mission [23]. For An. funestus, the density remained
relatively constant irrespective of the season [42]. Akin
to studies conducted in Burkina Faso, An. rufipes consti-
tuted a significant proportion of the anophelines col-
lected in this study [39]. This however differs markedly
with observations from the HLC collections in the
coastal areas and northern regions of Cameroon [21, 22]
and Chad [43], where An. rufipes density was low. The
vast number of prolific breeding sites (rice fields, river
banks and pools) during the study periods may explain
the high density of An. rufipes [19, 20].

With regard to the biting rates of the anophelines,
except in Mayo Oulo where the highest An. rufipes dens-
ities were recorded in 2012 and 2013, An. gambiae (s.l.)
generally had the highest biting rates throughout the study
(Table 2). Analyses of the blood meal sources among the
members of the An. gambiae complex revealed An. gam-
biae despite its low density compared to An. coluzzii and
An. arabiensis, to be the most anthropophagic. Amongst
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the vectors for which the blood meal source was con-
firmed, they were observed to feed mainly on cow, which
is the most widely domesticated animal in this part of the
country. Anopheles rufipes was observed to feed on both
humans and animals confirming the species opportunistic
behaviour or may be simply due to the imposing environ-
mental conditions. Livestock rearing is a common practice
with animals like dog, chicken, horse, goat and donkey in
addition to those analyzed. Unlike previous reports on An.
funestus being the most anthropophagic Anopheles species
[33, 44—47] its human blood index in this study was very
low. This may be due to the presence of a variety of
domestic animals that provide an alternative source for
blood-feeding or due to the occurrence of other members
of the An. funestus group of species. In fact, Anopheles
funestus (s.l.) comprises at least nine species that are mor-
phologically identical [3]: An. funestus (s.s.), An. vaneedeni
Gillies & Coetzee, An. parensis Gillies, An. aruni Sobti,
An. confusus Evans & Leeson, An. rivulorum Leeson, An.
fuscivenosus Leeson, An. leesoni Evans and An. brucei
Service. All except An. funestus (s.s.) and to some extent
An. rivulorum are purported to be exclusively zoophilic
and non-vectors [48]. Despite the fact that many authors
reported a high infection rate of An. funestus during dry
season [3, 49], Antonio-Nkondjio et al. [22] observed a
pronounced anthropohilic behaviour of An. funestus dur-
ing the wet season while this species was exclusively zoo-
philic during the dry season. Other earlier studies [50, 51]
also reported besides An. funestus (s.s.) the presence of
Anopheles leesoni Evans and Anopheles rivulorum-like in
tributaries of the Benoue River in the northern region of
Cameroon. Based on these observations and the current
HBI results, there is the likelihood of the existence of
some zoophilic members of An. fumnestus group in this
area. Therefore, it would be important that subsequent
studies in this area should consider the identification of
the members of the An. funestus group of species and
their contribution to human malaria transmission.

On a general note, in addition to the Anopheles species
displaying endophagic and exophagic tendencies, the
parity rates were observably high in all HDs. Thus, des-
pite the high LLIN coverage in the study localities [52],
the malaria vectors survive long enough to sustain mal-
aria transmission locally.

The infection rates varied enormously between the health
districts. Overall, seven Anopheles species (An. arabiensis,
An. coluzzii, An. gambiae, An. funestus, An. pharoensis, An.
rufipes and An. paludis) were found infected with P. falcip-
arum. Even though the CSP rates were higher than those
obtained elsewhere under similar eco-epidemiological con-
ditions [22], measures were taken to minimize false positive
CS ELISA in these areas with an extensive animal reservoir
flow for blood-feeding. Thus, only high absorbance read-
ings (mean plus three standard deviations of negative
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controls) were considered. Nevertheless, this CSP-ELISA
may overestimate the infection rate and all positive samples
need to be confirmed with PCR [53]. Relatively low malaria
transmission intensity was observed throughout the years
in all health districts. The observed EIR estimate of 0.014 to
1.221 infective bites/person/night was consistent with other
records in the sahelian zone [25]. However, the transmis-
sion intensity during the study was pronounced in the
irrigated rice paddies of Pitoa, which is not uncommon to
other such irrigation schemes that generate a variety of
entomological and epidemiological situations with perman-
ent water bodies that are prolific for Anopheles breeding
and consequently increasing the risk of malaria in sur-
rounding population [54].

Conclusions

The study highlights the epidemiological role of An.
rufipes alongside the members of the Anopheles gambiae
complex, and several other sympatric species in human
malaria transmission during the wet season in northern
Cameroon. Thus, for the first time in Cameroon, the
role of An. rufipes as an important local malaria vector
has been made evident. The study also portrays the need
to carry out further studies to document the implication
of this species and other presumably non-malaria vectors
in human malaria transmission in other parts and to
review and update the malaria entomological profile in
the country and the Afrotropical region.
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