105 research outputs found

    A Possible Aeronomy of Extrasolar Terrestrial Planets

    Get PDF
    Terrestrial planetary systems may exist around nearby stars as the Earth-sized counterparts to the many giant planets already discovered within the solar neighborhood. In this chapter we first discuss the numerous techniques which have been suggested to search for extrasolar terrestrial planets. We then focus on the expected results from that technique in which an orbiting telescope or interferometer is used to obtain a visible or infrared spectrum of a planet, without contamination from the parent star. We show examples of such spectra for selected cases: the present Earth, the Neoproterozoic (snowball) Earth, a methane-rich Earth, and the present Mars and Venus. We conclude by discussing the implications of such spectra for the detection of life on an extrasolar terrestrial planet.Comment: This will appear in the upcoming AGU Monograph 130 "Atmospheres in the Solar System: Comparative Aeronomy". It will be on page 36

    Atmospheric Biomarkers and their Evolution over Geological Timescales

    Full text link
    The search for life on extrasolar planets is based on the assumption that one can screen extrasolar planets for habitability spectroscopically. The first space born instruments able to detect as well as characterize extrasolar planets, Darwin and terrestrial planet finder (TPF-I and TPF-C) are scheduled to launch before the end of the next decade. The composition of the planetary surface, atmosphere, and its temperature-pressure profile influence a detectable spectroscopic signal considerably. For future space-based missions it will be crucial to know this influence to interpret the observed signals and detect signatures of life in remotely observed atmospheres. We give an overview of biomarkers in the visible and IR range, corresponding to the TPF-C and TPF-I/DARWIN concepts, respectively. We also give an overview of the evolution of biomarkers over time and its implication for the search for life on extrasolar Earth-like planets. We show that atmospheric features on Earth can provide clues of biological activities for at least 2 billion years.Comment: for high resolution images see http://cfa-www.harvard.edu/~lkaltenegge

    NASA's Carbon Monitoring System Flux-Pilot Project: A Multi-Component Analysis System for Carbon-Cycle Research and Monitoring

    Get PDF
    The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The results will be discussed in the context of interannual variability of observed atmospheric CO2 distributions

    Far-Infrared Spectroscopy of the Troposphere (FIRST): Flight Performance and Data Processing

    Get PDF
    The radiative balance of the troposphere, and hence global climate, is dominated by the infrared absorption and emission of water vapor, particularly at far-infrared (far-IR) wavelengths from 15-50 μm. Current and planned satellites observe the infrared region to about 15.4 μm, ignoring spectral measurement of the far-IR region from 15 to 100μm. The far-infrared spectroscopy of the troposphere (FIRST) project, flown in June 2005, provided a balloon-based demonstration of the two key technologies required for a space-based far-IR spectral sensor. We discuss the FIRST Fourier transform spectrometer system (0.6 cm-1 unapodized resolution), its radiometric calibration in the spectral range from 10 to 100 μm, and its performance and science data from the flight. Two primary and two secondary goals are given and data presented to show the goals were achieved by the FIRST flight

    Ozone-depleting substances (ODSs) and related chemicals

    Get PDF
    The amended and adjusted Montreal Protocol continues to be successful at reducing emissions and atmospheric abundances of most controlled ozone-depleting substances (ODSs).Global Ozone Research and Monitoring Projec

    A superfluid hydrodynamic model for the enhanced moments of inertia of molecules in liquid 4He

    Full text link
    We present a superfluid hydrodynamic model for the increase in moment of inertia, ΔI\Delta I, of molecules rotating in liquid 4^4He. The static inhomogeneous He density around each molecule (calculated using the Orsay-Paris liquid 4^4He density functional) is assumed to adiabatically follow the rotation of the molecule. We find that the ΔI\Delta I values created by the viscousless and irrotational flow are in good agreement with the observed increases for several molecules [ OCS, (HCN)2_2, HCCCN, and HCCCH3_3 ]. For HCN and HCCH, our model substantially overestimates ΔI\Delta I. This is likely to result from a (partial) breakdown of the adiabatic following approximation.Comment: 4 pages, 1 eps figure, corrected version of published paper. Erratum has been submitted for change

    Ozone Production and Loss Rate Measurements in the Middle Stratosphere

    Get PDF
    The first simultaneous measurements of HO(x), NO(x), and Cl(x) radicals in the middle stratosphere show that NO(x) catalytic cycles dominate loss of ozone (O3) for altitudes between 24 and 38 km; Cl(x) catalytic cycles are measured to be less effective than previously expected; and there is no 'ozone deficit' in the photochemically dominated altitude range from 31 and 38 km, contrary to some previous theoretical studies

    Validation of the Aura Microwave Limb Sounder HNOmeasurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of ∼0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to ∼5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ∼±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging)
    corecore