111 research outputs found

    A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair

    Get PDF
    The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5 and 7 but not Hdac9. Here we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4,5 and 7 are simultaneously removed, the Myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury

    Increased Levels of Diadenosine Polyphosphates in Dry Eye

    Get PDF
    Purpose. To analyze the levels of the diadenosine polyphosphates Ap4A and Ap5A in tears, in a set of control subjects and in groups of symptomatic and nonsymptomatic persons with dry eye. Methods. Ninety-seven subjects participated in the study. The subjects were divided into five experimental groups: control subjects; symptomatic patients with normal tear secretion; symptomatic patients with low tear secretion; forced blink; and corneal mechanical stimulation provided by a gas esthesiometer. The Schirmer I test was used to measure and collect tear secretions from each subject. All samples were processed by high pressure liquid chromatography (HPLC) and their Ap4A and Ap5A levels determined. Results. The levels of Ap4A and Ap5A in tears were greater in all symptomatic patients than in control subjects, especially in symptomatic subjects with low tear secretion. Within the symptomatic subjects with normal tear secretion, significant differences in concentrations of Ap4A and Ap5A were found between men and women. In the forced blink experiments, concentrations of the Ap4A and Ap5A rose with increasing blink frequency. When the cornea was mechanically stimulated, the levels of Ap4A and Ap5A rose significantly during both moderate and high-flow rate tests. Conclusions. The increased levels of Ap4A and Ap5A in tears of patients with dry eye allow these dinucleotides to be used as objective biomarkers in dry eye conditions

    Selective changes in human corneal sensation associated with herpes simplex virus keratitis

    Get PDF
    PURPOSE. To determine corneal sensitivity to selective mechanical, chemical, and thermal (heat and cold) stimulation in patients with a history of herpes simplex virus (HSV) keratitis. METHODS. Corneal sensitivity to different modalities of stimulus was determined in both eyes of 16 patients with unilateral HSV keratitis diagnosed 1 to 12 months before the study. On slit lamp examination, 13 HSV-affected eyes showed corneal scarring or opacities, and three had no signs of previous keratitis. Corneal sensitivity was determined with the Belmonte gas esthesiometer. Mechanical, chemical, heat, and cold stimuli were applied on the central cornea. Eyes from 10 healthy subjects served as controls. RESULTS. In all control and contralateral eyes, selective mechanical, chemical, heat, and cold stimulation evoked sensations of subjective intensity proportional to the magnitude of the applied stimulus. In one HSV patient, the affected cornea was unresponsive to all types of stimuli, four lost only corneal sensitivity to mechanical stimulation, and three lost only sensitivity to heat. Mechanical (P Ͻ 0.005) and heat (P Ͻ 0.05) thresholds were raised in HSV eyes, whereas thresholds for CO 2 were not modified. Also, HSV subjects identified poorly the intensity of mechanical, chemical, and heat stimuli, whereas sensitivity to cold stimulation was unaffected. CONCLUSIONS. In eyes that had had HSV keratitis, corneal sensitivity to mechanical forces and heat was significantly impaired, suggesting that axonal damage and/or altered expression of membrane ion channels involved in transduction and membrane excitability affects primarily the mechano-and polymodal nociceptor terminals. Corneal cold-sensitive terminals remain largely unaffected. (Invest Ophthalmol Vis Sci. 2010; 51:4516 -4522) DOI:10.1167/iovs.10-5225 C orneal infection by herpes simplex virus (HSV) is a common condition that usually develops as an acute or chronic corneal inflammation. 1 The disease is most often due to reactivation of a latent infection of trigeminal sensory neurons innervating the cornea and possibly also of corneal epithelial cells by the neurotropic HSV (HSV1, HSV2, or both). 2,3 As a result, the patient develops an epithelial keratitis. This condition is in many cases recurrent, mainly after HSV-1 infection, 2,5-7 HSV infection often affects also the corneal stroma, inducing a herpes stromal keratitis (HSK). Occasionally, HSV reaches the corneal endothelium, causing endothelial cell loss and permanent corneal swelling. Recurrent episodes may eventually lead to corneal scarring, opacities, and irregular astigmatism. Herpes simplex infection is a common cause of corneal sensory loss, 8 although less severe than in keratitis caused by reactivation of varicella-zoster virus. 10 Sensations evoked at the ocular surface result from the activation of several functional classes of primary sensory neurons located in the trigeminal ganglion (TG), the peripheral axons of which innervate the anterior segment of the eye. 11-13 Polymodal nociceptors, the most abundant receptor type in the cornea, respond to noxious or near-noxious mechanical and thermal stimuli, to exogenous irritants, and to inflammatory agents, predominantly mediating burning pain. Mechanonociceptors are activated only by noxious mechanical forces and possibly elicit mainly pricking pain, whereas cold thermoreceptors respond to small temperature reductions of the corneal surface and evoke cooling and perhaps dryness sensations referred to the eye. 14 -16 Unpleasant and painful ocular sensations arising in HSV keratitis patients may be due to an altered neural activity in infected TG corneal sensory neurons. METHODS Patients Sixteen patients (nine women and seven men; age 40.4 Ϯ 3.7 years, range 16 -66) with a history of unilateral HSV keratitis during the year From th

    Tear Secretion Induced by Selective Stimulation of Corneal and Conjunctival Sensory Nerve Fibers

    Get PDF
    Purpose. To measure the increase in tear secretion evoked by selective stimulation of the different populations of sensory receptors of the cornea and conjunctiva by using moderate and intense mechanical, chemical, and cold stimuli. Methods. Six healthy subjects participated in the study. Tear secretion was measured in both eyes by the Schirmer’s test conducted under control conditions and after stimulation of the center of the cornea and the temporal conjunctiva with a gas esthesiometer. Mechanical stimulation consisted in three pulses of 3 seconds’ duration of warmed air (at 34°C on the eye surface) applied at moderate (170 mL/min) and high (260 mL/min) flow rates. Cold thermal stimulation was made with cooled air that produced a corneal temperature drop of −1°C or −4.5°C. Chemical (acidic) stimulation was performed with a jet of gas containing a mixture of 80% CO2 in air. Results. The basal volume of tear secretion increased significantly (P < 0.05, paired t-test) after stimulation of the cornea with high-flow mechanical stimuli (260 mL/min), intense cooling pulses (−4.5°C), and chemical stimulation (80% CO2). The same stimuli were ineffective when applied to the conjunctiva. Moderate mechanical (170 mL/min) and cold (−1°C) stimulation of the cornea or the conjunctiva did not change significantly the volume of tear secretion. Conclusions. Reflex tear secretion caused by corneal stimulation seems to be chiefly due to activation of corneal polymodal nociceptors, whereas selective excitation of corneal mechanonociceptors or cold receptors appears to be less effective in evoking an augmented lacrimal secretion. Conjunctival receptors stimulated at equivalent levels do not evoke an increased tear secretion

    Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice

    Get PDF
    Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8BAC-EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 348C and low-threshold, robust responses to cooling. The remaining TRPM81 corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 348C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM81 corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear’s basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people.This work was supported by grants FC-15-GRUPIN14–141 (Consejería de Economía y Empleo, Asturias, Spain),Fundación Ramón Areces, Caja Rural de Asturias, SAF2014–54518-C3-2-R, SAF2014– 54518-C3-1-R, SAF2017–83674-C2-2-R, SAF2017–83674-C2-1-R,SAF2016–77233-R (Ministerio de Economía, Industria y Competitividad, Spain and European Regional Development Funds, European Union)“Severo Ochoa” Program for Centers of Excellence in R&D (SEV-2013-0317)

    Preclinical pharmacology, ocular tolerability and ocular hypotensive efficacy of a novel non-peptide bradykinin mimetic small molecule

    Get PDF
    We sought to characterize the ocular pharmacology, tolerability and intraocular pressure (IOP)-lowering efficacy of FR-190997, a non-peptidic bradykinin (BK) B2-receptor agonist. FR-190997 possessed a relatively high receptor binding affinity (Ki = 27 nM) and a high in vitro potency (EC50 = 18.3 ± 4.4 nM) for inositol-1-phosphate generation via human cloned B2-receptors expressed in host cells with mimimal activity at B1-receptors. It also mobilized intracellular Ca2+ in isolated human trabecular meshwork (h-TM), ciliary muscle (h-CM), and in immortalized non-pigmented ciliary epithelial (h-iNPE) cells (EC50s = 167–384 nM; Emax = 32–86% of BK-induced response). HOE-140, a selective B2-receptor antagonist, potently blocked the latter effects of FR-190997 (e.g. IC50 = 7.3 ± 0.6 nM in h-CM cells). FR-190997 also stimulated the release of prostaglandins (PGs) from h-TM and h-CM cells (EC50s = 60–84 nM; Emax = 29–44% relative to max. BK-induced effects). FR-190997 (0.3–300 μg t.o.) did not activate cat corneal polymodal nociceptors and did not cause ocular discomfort in Dutch-Belted rabbits, but it was not well tolerated in New Zealand albino rabbits and Hartley guinea pigs. A single topical ocular (t.o.) dose of 1% FR-190997 in Dutch-Belted rabbits and mixed breed cats did not lower IOP. However, FR-190997 efficaciously lowered IOP of conscious ocular hypertensive cynomolgus monkey eyes (e.g. 34.5 ± 7.5% decrease; 6 h post-dose of 30 μg t.o.; n = 8). Thus, FR-190997 is an unexampled efficacious ocular hypotensive B2-receptor non-peptide BK agonist that activates multiple signaling pathways to cause IOP reduction.Peer reviewe

    The effect of tear supplementation with 0.15% preservative-free zinc-hyaluronate on ocular surface sensations in patients with dry eye

    Get PDF
    [Purpose]: To evaluate the effect of tear supplementation with preservative free 0.15% zinc-hyaluronate on ocular surface sensations and corneal sensitivity in dry eye patients.[Methods]: Ocular surface sensations were assessed using the ocular surface disease index (OSDI) questionnaire and by recording ocular sensations during forced blinking in parallel with noninvasive tear film breakup time measurement in 20 eyes of 20 dry eye patients. Corneal sensitivity thresholds to selective stimulation of corneal mechano-, thermal- and chemical receptors were measured using the Belmonte gas esthesiometer. All baseline measurements were repeated after 1 month of treatment with 0.15% zinc-hyaluronate.[Results]: After 1 month, a significant decrease in mean OSDI score (from 35.66 ± 12.36 to 15.03 ± 11.22; P 0.05).[Conclusion]: Prolonged use of 0.15% zinc-hyaluronate results in an improvement of tear film stability and a decrease of dry eye complaints. The decrease in corneal mechano-and polymodal receptor excitability suggests that zinc-hyaluronate helps to recover normal corneal sensitivity, and thus might have a beneficial additional effect on reducing ocular surface complaints in dry eye patients.Peer reviewe

    The Effect of Tear Supplementation on Ocular Surface Sensations during the Interblink Interval in Patients with Dry Eye.

    Get PDF
    PURPOSE: To investigate the characteristics of ocular surface sensations and corneal sensitivity during the interblink interval before and after tear supplementation in dry eye patients. METHODS: Twenty subjects (41.88+/-14.37 years) with dry eye symptoms were included in the dry eye group. Fourteen subjects (39.13+/-11.27 years) without any clinical signs and/or symptoms of dry eye were included in the control group. Tear film dynamics was assessed by non-invasive tear film breakup time (NI-BUT) in parallel with continuous recordings of ocular sensations during forced blinking. Corneal sensitivity to selective stimulation of corneal mechano-, cold and chemical receptors was assessed using a gas esthesiometer. All the measurements were made before and 5 min after saline and hydroxypropyl-guar (HP-guar) drops. RESULTS: In dry eye patients the intensity of irritation increased rapidly after the last blink during forced blinking, while in controls there was no alteration in the intensity during the first 10 sec followed by an exponential increase. Irritation scores were significantly higher in dry eye patients throughout the entire interblink interval compared to controls (p0.05). CONCLUSION: Ocular surface irritation responses due to tear film drying are considerably increased in dry eye patients compared to normal subjects. Although tear supplementation improves the protective tear film layer, and thus reduce unpleasant sensory responses, the rapid rise in discomfort is still maintained and might be responsible for the remaining complaints of dry eye patients despite the treatment

    Corneal Sensitivity and Dry Eye Symptoms in Patients with Keratoconus.

    Get PDF
    PURPOSE: To investigate corneal sensitivity to selective mechanical, chemical, and thermal stimulation and to evaluate their relation to dry eye symptoms in patients with keratoconus. METHODS: Corneal sensitivity to mechanical, chemical, and thermal thresholds were determined using a gas esthesiometer in 19 patients with keratoconus (KC group) and in 20 age-matched healthy subjects (control group). Tear film dynamics was assessed by Schirmer I test and by the non-invasive tear film breakup time (NI-BUT). All eyes were examined with a rotating Scheimpflug camera to assess keratoconus severity. RESULTS: KC patients had significatly decreased tear secretion and significantly higher ocular surface disease index (OSDI) scores compared to controls (5.3+/-2.2 vs. 13.2+/-2.0 mm and 26.8+/-15.8 vs. 8.1+/-2.3; p0.05). The mean threshold for selective mechanical (KC: 139.2+/-25.8 vs. control: 109.1+/-24.0 ml/min), chemical (KC: 39.4+/-3.9 vs. control: 35.2+/-1.9%CO2), heat (KC: 0.91+/-0.32 vs. control: 0.54+/-0.26 Delta degrees C) and cold (KC: 1.28+/-0.27 vs. control: 0.98+/-0.25 Delta degrees C) stimulation in the KC patients were significantly higher than in the control subjects (p0.05), whereas in the control subjects both mechanical (r = 0.52, p = 0.02), chemical (r = 0.47, p = 0.04), heat (r = 0.26, p = 0.04) and cold threshold (r = 0.40, p = 0.03) increased with age. In the KC group, neither corneal thickness nor tear flow, NI-BUT or OSDI correlated significantly with mechanical, chemical, heat or cold thresholds (p>0.05 for all variables). CONCLUSIONS: Corneal sensitivity to different types of stimuli is decreased in patients with keratoconus independently of age and disease severity. The reduction of the sensory input from corneal nerves may contribute to the onset of unpleasant sensations in these patients and might lead to the impaired tear film dynamics

    Hicieron Historia en la ciencia. Rita Levi-Montalcini

    Get PDF
    Rita Levi-Montalcini es un referente para la neurociencia. Gracias a su trabajo, descubrimos las herramientas químicas que utiliza el cuerpo para dirigir el crecimiento celular, construir las redes nerviosas y garantizar su supervivencia. Su trabajo permitió entender también cómo estos procesos de crecimiento celular pueden salir mal y provocar enfermedades como la demencia o el cáncer. Rita Levi-Montalcini desarrolló su investigación desde la década de 1930 hasta el siglo XXI. Publicó su último artículo científico con 102 años. A lo largo de su carrera, superó la persecución del nazismo y el machismo. Por sus descubrimientos sobre las moléculas que estimulan el crecimiento celular, y en particular de las neuronas, Levi-Montalcini recibió el Premio Nobel de Medicina y Fisiología en 1986 junto al bioquímico Stanley Cohen
    corecore