5 research outputs found

    A neural network-based method for spruce tonewood characterization

    Get PDF
    The acoustical properties of wood are primarily a function of its elastic properties. Numerical and analytical methods for wood material characterization are available, although they are either computationally demanding or not always valid. Therefore, an affordable and practical method with sufficient accuracy is missing. In this article, we present a neural network-based method to estimate the elastic properties of spruce thin plates. The method works by encoding information of both the eigenfrequencies and eigenmodes of the system and using a neural network to find the best possible material parameters that reproduce the frequency response function. Our results show that data-driven techniques can speed up classic finite element model updating by several orders of magnitude and work as a proof of concept for a general neural network-based tool for the workshop. © 2023 Acoustical Society of America

    Using Mechanical Metamaterials in Guitar Top Plates: A Numerical Study

    Get PDF
    Featured Application The use of mechanical metamaterials in musical instruments could be an excellent way to engineer the wood of the instrument to obtain a particular sound. It has recently been shown that the mechanical properties of thin, rectangular wooden plates can be tuned by carving them with specific patterns of perforations, effectively realising a 2D wooden mechanical metamaterial. Such a material is of great interest for the construction of musical instruments, as it could allow a new degree of creative control for makers. Furthermore, issues with the shrinking supplies of tone-woods could be alleviated as wood samples that don not meet the desired requirements could simply be altered, instead of being discarded. In this work, we study the effect of the use of these metamaterials in the soundboards of classical guitars. By way of simulations, we evaluate their impact on the modal behaviour and on the sound pressure level of the instrument, as well as on its ability to sustain the load exerted by the strings. Our results show that the metamaterials can tune the instrument's response without compromising its structural integrity. We thus conclude that the use of wooden mechanical metamaterials in the soundboards of classical guitars is feasible and, in many ways, beneficial, not the least since it opens the door to using non-traditional woods with bespoke density and stiffness

    Feature-based representation for violin bridge admittances

    No full text
    Frequency Response Functions (FRFs) are one of the cornerstones of musical acoustic experimental research. They describe the way in which musical instruments vibrate in a wide range of frequencies and are used to predict and understand the acoustic differences between them. In the specific case of stringed musical instruments such as violins, FRFs evaluated at the bridge are known to capture the overall body vibration. These indicators, also called bridge admittances, are widely used in the literature for comparative analyses. However, due to their complex structure they are rather difficult to quantitatively compare and study. In this manuscript we present a way to quantify differences between FRFs, in particular violin bridge admittances, that separates the effects in frequency, amplitude and quality factor of the first resonance peaks characterizing the responses. This approach allows us to define a distance between FRFs and clusterise measurements according to this distance. We use two case studies, one based on Finite Element Analysis and another exploiting measurements on real violins, to prove the effectiveness of such representation. In particular, for simulated bridge admittances the proposed distance is able to highlight the different impact of consecutive simulation 'steps' on specific vibrational properties and, for real violins, gives a first insight on similar styles of making, as well as opposite ones

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Quality of Vitamin K Antagonist Control and 1-Year Outcomes in Patients with Atrial Fibrillation: A Global Perspective from the GARFIELD-AF Registry

    No full text
    Aims Vitamin K antagonists (VKAs) need to be individually dosed. International guidelines recommend a target range of international normalised ratio (INR) of 2.0 - 3.0 for stroke prevention in atrial fibrillation (AF). We analysed the time in this therapeutic range (TTR) of VKAtreated patients with newly diagnosed AF in the ongoing, global, observational registry GARFIELD-AF. Taking TTR as a measure of the quality of patient management, we analysed its relationship with 1-year outcomes, including stroke/systemic embolism (SE), major bleeding, and all-cause mortality
    corecore