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A neural network-based method for spruce tonewood
characterization
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ABSTRACT:
The acoustical properties of wood are primarily a function of its elastic properties. Numerical and analytical

methods for wood material characterization are available, although they are either computationally demanding or

not always valid. Therefore, an affordable and practical method with sufficient accuracy is missing. In this article,

we present a neural network-based method to estimate the elastic properties of spruce thin plates. The method works

by encoding information of both the eigenfrequencies and eigenmodes of the system and using a neural network to

find the best possible material parameters that reproduce the frequency response function. Our results show that

data-driven techniques can speed up classic finite element model updating by several orders of magnitude and work

as a proof of concept for a general neural network-based tool for the workshop.
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I. INTRODUCTION

Wood selection is one of the most important issues in

stringed instrument making: Wood displays a high intra-

species, inter-species, intra-specimen, and inter-specimen

variability in its material properties (Wegst, 2006), yet those

very same material properties play a crucial role in the

design of the instrument (Yoshikawa, 2007). Typically, luth-

iers focus on the density and the longitudinal Young’s mod-

ulus of the instrument soundboard (Barlow, 1997).

However, several elastic constants contribute to the acous-

tics of the soundboard, in particular, the radial Young’s

modulus and the longitudinal to radial shear modulus

(Obataya et al., 2000; Viala et al., 2020). Moreover, multi-

ple components of a stringed instrument—including the

strings and their supporting area—have a primary impact on

the instrument vibrational properties. Indeed, recent studies

on a classical guitar (Brauchler et al., 2022a; Brauchler

et al., 2022b) show that the material properties of the guitar

back-plate, neck, and bracing are highly correlated to the

eigenfrequencies of the complete instrument. Accurately

measuring those constants is of paramount importance when

consistency of production is required.

In this context, luthiers often fail in the selection of

wood with the best acoustical performance (Ball, 2007;

Buksnowitz et al., 2007). Indeed, few makers employ a sci-

entific approach to select wood (Carlier et al., 2018).

Nonetheless, the scientific community has developed

numerous vibrational non-destructive (ND) techniques to

identify the material properties of wood. Focusing only on

the most popular ones, we can name ultrasonic wave propa-

gation (Fang et al., 2017), Lamb wave propagation (Lasn

et al., 2011), and finite element model (FEM) updating

methods (Farhat and Hemez, 1993).

Among these, FEM updating has been widely and suc-

cessfully applied to characterize wooden bodies with arbi-

trary geometry (Larsson, 1997; Viala et al., 2018; Zhou

et al., 2017). In practice, these methods perform the identifi-

cation of the material parameters through the minimization

of a cost function. Typically, the cost function is the relative

difference between a prescribed number of eigenfrequencies

of the body under analysis and their predictions obtained

from a finite element simulation. An in-depth description of

FEM updating can be found in Mottershead et al. (2011).

However, FEM updating approaches are not widely

employed by instrument makers since they may require

advanced measuring techniques, e.g., a laser vibrometer as

in Brauchler et al. (2021) and Viala et al. (2018), or multiple

measurements, as in Ara�ujo et al. (1996) and Sol et al.
(1993), if the modal information is to be retrieved, making

them very time-consuming. Furthermore, since they are usu-

ally based on complex numerical models, these methods are

computationally expensive and are beyond the technical

abilities of the average luthier.

One way to speed up FEM updating methods is to

employ machine learning techniques (Bock et al., 2019).

Indeed, neural networks (NNs) can be used in place of a

FEM simulation to obtain the eigenfrequencies of a body in

a computational time that can be down to 1/1000th of the

time required by FEM without a significant sacrifice of

accuracy (Badiane et al., 2022; Gonzalez et al., 2021; Salvi

et al., 2021). However, NN-based methods for the character-

ization of tonewood are still missing.

It is important to mention that a fast state-of-the-art

method for tonewood characterization is already available in

instrument making, although applicable only to rectangulara)Electronic mail: raffaele.malvermi@polimi.it
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wooden plates. Indeed, Caldersmith (1984); McIntyre and

Woodhouse (1988), and Mclntyre and Woodhouse (1986)

introduce a set of equations to estimate the most important

elastic constants of a wooden plate starting from a subset of

its eigenfrequencies. However, the validity and the accuracy

of such formulas vary with the plate geometry and can thus

lead to non-negligible errors when using non-rectangular

plates, as one usually finds in guitar-making.

In this article, we present a novel NN-based technique

to identify the elastic constants of a thin rectangular spruce

plate with given dimensions and density. The technique is

called FRF2Params, as it requires the measurement of a sin-

gle frequency response function (FRF) (Fletcher and

Rossing, 2012) to estimate the plate material parameters

(Params). FRF2Params is based on the minimization of a

cost function that takes into account both the frequency and

the amplitude of the peaks of the measured and modeled

FRFs, predicted at each minimization step by two NNs, one

for the frequency and another for the amplitude. In this way,

by learning the behavior of the amplitude, the NN is actually

learning about the modal shapes present in the top plate,

information that up until now has not been included in the

material characterization.

Since NNs approximate the relation between material

parameters and eigenfrequencies through a set of non-linear

equations, FRF2Params represents a middle ground

between full-fledged FEM updating methods and the analyt-

ical formulas mentioned above. In particular, FRF2Params
is both fast and robust to modifications of the plate geome-

try. If properly trained, in fact, NNs can be used to model

arbitrary geometries (Gonzalez et al., 2021), making this

method easily extendable to other objects.

The paper is organised as follows: in Sec. II, the prob-

lem of the identification of the plate material properties

from a single FRF is presented. In Sec. III, an in-depth

description of the FRF2Params method is provided. In Sec.

IV, the generation of the dataset used to train the NNs is

illustrated. In Sec. V, the prediction accuracy of the NNs is

discussed, and FRF2Params is applied to characterize a set

of ten thin plates of Norway spruce (Picea abies).

II. PROBLEM FORMULATION

To build the soundboard of a classical guitar, guitar

makers start from two thin rectangular plates of wood, often

spruce. The plates are glued together as shown in Fig. 1(a).

The geometry of each plate is characterized by its length l,
width w, and thickness h. Although the size of the plate

depends on the supplier and the guitar model to be built, rea-

sonable nominal dimensions are ð580� 220� 4Þ mm in

the (L, R, T) reference system, where L, R, and T correspond

to the wood grain direction (longitudinal), the direction nor-

mal to the growth rings (radial), and the direction tangential

to the growth rings (tangential), respectively. The employed

reference system is reported at the bottom of Fig. 1(a). We

will refer to such plates as classical guitar plates.

We model the elastic behavior of wood in the (L, R, T)

reference system by assuming a linear elastic and homoge-

neous material. In particular, a simplified orthotropic model

is employed, such that nine elastic constants, namely three

Young’s moduli ðEL;ER;ETÞ, three shear moduli

ðGLR;GRT ;GLTÞ, and three Poisson’s ratios ð�LR; �RT ; �LTÞ
completely characterize the material (Ross, 2010). We will

denote them as material parameters. Typically, it is

assumed that vibration does not occur along the tangential

direction when considering thin plates. Therefore, only the

parameters ðEL;ER;GLR; �LRÞ are normally considered as

relevant to model the plate material. We decided to employ

FIG. 1. (Color online) (a) Diagram of two classical guitar plates glued together. Although the plate geometry depends on the supplier, reasonable nominal

dimensions are ð580� 220� 4Þ mm according to the (L, R, T) reference system reported at the bottom of the figure. (b) Simulated FRF and modal shapes

of a classical guitar plate with standard geometry, nominal elastic constants shown in Table I, and density q ¼ 421 kgm�3. The FRF is evaluated in terms of

a mobility, i.e., the ratio between plate velocity and exerted force. The measurement points at which the FRF is evaluated are placed at 20 mm from the

edges of the bottom-left and top-right corners of the plate and are denoted with white disks over the modal shapes.
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here the complete orthotropic model, since we are interested

in a general method that can be applied also to different

geometries.

Our aim is to estimate the material parameters of a clas-

sical guitar plate from a single mobility FRF, that is, the

ratio between the plate velocity and the force applied to it,

evaluated at a pair of prescribed measurement points. Figure

1(b) shows an example FRF, measured at 20 mm from the

edges of the bottom-left and top-right corners of a “virtual”

plate. The virtual plate, modeled with the finite element

method, has nominal dimensions, the material parameters

shown in Table I, and density q¼ 421 kg m�3. The FRF

amplitude, reported in linear scale, is characterized by a

sequence of R peaks in the low-frequency range. We denote

each peak with its frequency location and amplitude value,

i.e., ðf̂ r; ârÞ with r ¼ 1;…;R. The FRF is measured as a

mobility in a 2 mm radius circular area at the impact point

of the hammer.

It must be noted that the set of identifiable peaks inside

the FRF corresponds to a subset of the plate modes within

the same frequency range (Meirovitch, 2001). The plate

modes, in fact, are characterized by an eigenfrequency fs, a

modal damping ratio ns (Fletcher and Rossing, 2012), with

s ¼ 1;…; S and S � R, and a modal shape, i.e., the normal

velocity field when the plate surface vibrates at fs. The FRF

amplitude as evaluated at fs can be approximated as a func-

tion of the three modal features (Malvermi et al., 2022). The

selected measurement points can be at the nodal lines (i.e.,

regions of zero velocity) of a mode. In this case, as will cor-

respond to a local minimum of the FRF instead of a peak.

The inset in Fig. 1(b) shows the modal shapes of the vir-

tual plate that are excited at the chosen measurement points.

The measurement points are denoted with white disks over

each modal shape. The nodal lines and the maxima inside

the modal shape are highlighted in dark red and blue,

respectively. Each modal shape is labelled using the nota-

tion based on nodal lines presented in Fletcher and Rossing

(2012).

Given a classical guitar plate, the values of fs and as

associated with the sth low-frequency mode are related to

the material, geometric, and damping properties of the plate

by means of two continuous functionals F s and As, namely,

fs � F sðM1;…;M9; q; l;w; h; nsÞ; (1)

as � AsðM1;…;M9; q; l;w; h; nsÞ; (2)

where Mk with k ¼ 1;…; 9 are the material parameters of

the plate. Therefore, the identification of the plate material

parameters starting from a measured FRF can be formulated

as the inversion of Eqs. (1) and (2) with respect to Mk, given

the pair ðf̂ r; ârÞ as part of the inputs of the inverse problem.

However, the different nature of the modes within the FRF,

which may be either peaks or local minima, makes Eq. (2)

highly non-linear and, thus, not easily invertible. For this

reason, we regress the two functionals by means of NNs

trained with the outcomes of a FEM.

III. METHODOLOGY

FRF2Params takes as input the peaks of one measured

FRF ðf̂ r; ârÞ, the plate density q, and the plate dimensions

(l, w, h). The updating stage of the method is based on the

minimization of a cost function between ðf̂ r; ârÞ and the

eigenfrequency and FRF amplitude of the corresponding

plate mode, i.e., (fs, as), predicted by the NNs. The minimi-

zation is achieved with the MATLAB
VR

function FMINSEARCH,

which applies the Nelder–Mead simplex direct search algo-

rithm (Lagarias et al., 1998), as it does not need to compute

gradients, and it guarantees stability also with discontinuous

cost functions as in our case.

The updating is limited only to the plate material

parameters. Figure 2 shows the pipeline of the parameter

updating procedure. The NNs predict the pairs (fs, as), with

s ¼ 1;…; S, associated with the plate modes. The predic-

tions of the NNs are employed along with the peaks of the

FRF to compute the cost function. The material parameters

are iteratively updated to minimize the cost function until

the termination criteria are met.

TABLE I. Center values of the material parameters in the dataset, i.e., nom-

inal elastic constants of Norway spruce (P. abies) (Hearmon, 1948).

EL0
¼ 10:9 GPa GLR0

¼ 580 MPa �LR ¼ 0:39

ER0
¼ 640 MPa GRT0

¼ 26 MPa �RT ¼ 0:64

ET0
¼ 420 MPa GLT0

¼ 590 MPa �LT ¼ 0:49

FIG. 2. (Color online) Flow chart of the minimization procedure within the FRF2Params method. Only the material parameters of the plate are subject to

update. Once fed with the inputs, the neural networks predict the pairs (fs, as) associated with the plate modes. The cost function in Eq. (7) is computed in

the frequency/amplitude space. The material parameters are updated at each minimization step until the termination criteria of the minimization procedure

are met.
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The minimization procedure starts from a first guess of

the plate material parameters, i.e., the elastic constants

reported in Table I. To enhance the robustness of the solu-

tion, we use as final estimate the average over the outputs

of ten runs of the minimization procedure. At each run, the

density is sampled from a Gaussian random variable with

the measured plate density as mean and a standard devia-

tion equal to the 2.5% of the center value, thus, modeling

the error associated with the measurement of the density.

We do this to account for the variability in the height of the

plate, as it is the largest uncertainty in our measurements.

A single minimization run takes approximately 40 s on a

laptop.

A. Cost function computation and model updating

The cost function for the optimisation is defined in the

frequency/amplitude space. Both ðf̂ r; ârÞ and ðfs; asÞ can be

represented as points of this space. In particular, a mode

matching operation is performed to discard the eigenfre-

quencies corresponding to local minima inside the FRF. We

do so by computing the relative difference between the fre-

quency f̂ r of each FRF peak and the nearest plate eigenfre-

quency fs in the frequency/amplitude space. The amplitude

information is used only in the mode matching stage. This

last part is fundamental as it implicitly takes into account

the amplitude in a cost function that only depends on the

eigenfrequencies.

Let us consider the two sets of pairs characterizing the

experimental FRF peaks and the predicted plate modes,

namely, fðf̂ r; ârÞgr¼1;…;R and fðfs; asÞgs¼1;…;S, respectively,

where R¼ 12 and S¼ 15. Both the experimental FRF

amplitudes âr and their numerical counterparts as are

expressed in dB scale. As the amplitudes of the experimen-

tal FRF peaks are not obtained in “ideal” conditions due to

both the hammer and the impact characteristics (Mali and

Singru, 2018), we normalize the simulated amplitudes

through

a�s ¼ as þ 20 log10

1

K

XK

k¼1

âkjlin
akjlin

 !
; (3)

where a�s is the normalized amplitude associated with fs and

is expressed in dB, K¼ 5 to take into account the first peaks

according to Mali and Singru (2018), âkjlin and akjlin are the

amplitudes âr and as in linear scale, respectively, and

r¼ s¼ k, respectively.

We compute the matrix D 2 RR�S of the Euclidean dis-

tances between all the combinations of ðf̂ r; ârÞ and ðfs; a�s Þ.
A single entry of this matrix is calculated as

D½ �r;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf̂ r � fsÞ2 þ gðâr � a�s Þ

� �2q
; (4)

where the coefficient

g ¼ 1

R

XR

r¼1

f̂r

âr
(5)

is used to give the same weight to frequencies and ampli-

tudes in the computation of the distance.

Therefore, for each f̂ �r with �r ¼ 1;…;R we can detect

the index of the nearest fs as

v½ ��r ¼ argminsf D½ �r;s j r ¼ �r � s ¼ 1;…; Sg; (6)

such that v 2 RR�1.

Finally, the cost function L̂2 is computed as

L̂2 ¼
XR

r¼1

wr

f̂ r � f v½ �r
f̂ r

 !2

þ Jv; (7)

wr ¼
1:2 if r � 5

1 otherwise;

(
(8)

Jv ¼ ðR� AÞ2; (9)

where (i) wr is the rth entry of a vector of weights w and

allows us to slightly prioritize the frequency matching

between lower frequency modes, as they are more correlated

to the plate material properties as shown in Caldersmith

(1984); (ii) f½v�r is the nearest fs with respect to f̂ r; (iii) A is

the number of distinct values belonging to v (i.e., the cardi-

nality of v), and Jv is a penalty function to avoid the condi-

tion in which two or more f̂ r are associated with the same fs
(note that when this condition occurs, R>A and Jv > 0).

B. FRF measurements

For the experimental results, a dynamometric hammer

with light tip (086E80, PCB Piezotronics, Depew, NY) and

a uniaxial accelerometer (352A12, PCB Piezotronics) were

used to generate an impulsive excitation and measure the

harmonic response, respectively. For each measurement, six

time-domain signals of 2 s sampled at 48 kHz were

acquired. FRFs were then estimated following the definition

of the H1 estimator to reduce noise caused by the instrumen-

tation (Schwarz and Richardson, 1999). The magnitudes of

the resulting FRFs are represented in dB scale, with a refer-

ence value equal to 1 ms�1 N�1. The mass of the accelerom-

eter is not considered in the FEM simulations for the sake of

simplicity.

IV. DATASET GENERATION

We model the classical guitar plate with a FEM of a

thin rectangular plate with orthotropic material on COMSOL
MultiphysicsVR

. In our application, the measurement points

of the FRF are located 20 mm from the edges of the bottom-

left and top-right corners of the plate, and the impulsive

force has a constant spectrum. The measurement points are

located near the plate corners to excite more modes, as indi-

cated in Mali and Singru (2018).

We randomly sample Eqs. (1) and (2) by computing the

eigenfrequency fs and the amplitude as associated with the

first S¼ 15 plate modes with an Eigenfrequency study and a

J. Acoust. Soc. Am. 154 (2), August 2023 Badiane et al. 733

https://doi.org/10.1121/10.0020559

 26 January 2024 09:33:20

https://doi.org/10.1121/10.0020559


Frequency domain study, respectively. The plate material

parameters and geometry are sampled by means of 13 inde-

pendent Gaussian random variables as follows:

Y ¼ Y0ð1þ dYÞ; (10)

where Y is the sampled property, Y0 is its center value, and

dY is a zero-mean Gaussian random variable.

The center values of the material parameters correspond

to the nominal values of Norway spruce (Hearmon, 1948)

reported in Table I. The center values of the density and the

geometric parameters are set to q0¼ 421 kg m�3 and

ðl0 � w0 � h0Þ ¼ ð580� 220� 4Þmm, respectively. The

standard deviation of the Gaussian random variables dY is

rM ¼ 0:3 for the material parameters, rq ¼ 0:1 for the den-

sity, ½rl; rw; rh� ¼ ½0:01; 0:03; 0:075� for the geometric

parameters.

We employ the Rayleigh damping model (Rayleigh,

2013) and randomly sample its two control parameters a
and b as

a ¼ a0 1þ Uð�1; 1Þð Þ s�1½ �; (11)

b ¼ 2� 10Uð�1;1Þ�6 s½ �; (12)

where Uð�1; 1Þ is a uniform random variable ranging

within ½�1; 1�, and a0 ¼ 50 s�1. We sample Eqs. (1) and (2)

4500 times, thus, obtaining a dataset of 4500 occurrences

with 15 inputs (i.e., nine elastic constants, three geometric

parameters, two damping parameters, and density) and 30

outputs (fs, as) with s ¼ 1;…; 15. This dataset is used to

train the NNs.

Figure 3 shows the correlation matrix between the

mechanical parameters and the frequency and amplitude of

the simulated FRF obtained in the dataset. Despite only a

few parameters being correlated to the features of the FRF,

we will optimise for all of them as we do not want to force

the optimisation algorithm to select a path during the opti-

misation. Small variation in the irrelevant parameters, in

fact, can help the minimization to search more efficiently

the parameter space. Note how the damping parameters are

especially relevant for the amplitude of the FRF and how

the thickness variation has the same qualitative behavior as

the density variation for the frequencies. It is because of this

that in our optimisation procedure we only vary the material

parameters and leave the geometric parameters at nominal

values: Variations in the thickness enter into the algorithm

through uncertainty in the density of the plate.

V. RESULTS

A. Prediction accuracy of the NNs

We employ two multi-layer feedforward neural net-

works (MFNNs) (Svozil et al., 1997) to predict fs and as as

they are reckoned to be universal approximators of general

mappings from one finite dimensional space to another

(Hornik et al., 1989). In this work, the MATLAB
VR

machine

learning toolbox NNTRAINTOOL (Aldakheel et al., 2021; Beale

et al., 1992) is used to implement and train the MFNNs fol-

lowing the Levenberg–Marquardt algorithm (Mor�e, 1978).

To train and test the NNs, we randomly split the dataset pre-

sented in Sec. IV into train and test sets containing 90% and

10% of the total occurrences, respectively.

The quality of the estimation provided by the MFNNs

is assessed by evaluating the average coefficient of determi-

nation R2 , defined as

R2 ¼ 1

S

XS

s¼1

R2
s ; s ¼ 1;…; S; (13)

where S¼ 15, and R2
s is the coefficient of determination

(Glantz and Slinker, 2001) related to the estimation of the

sth output in the test set.

The total number of layers L and the number of neurons

per layerM define the topology of the MFNN, indicated as

ðM� LÞ. The accuracy of the MFNN can be enhanced by

optimising its topology, so that the expressivity of the net-

work meets the complexity of the training data. This optimi-

sation stage is commonly referred to as hyperparameters

tuning.

Concerning the estimation of the frequencies, we follow

the same rationale as Gonzalez et al. (2021), where a

ð7� 1ÞNN was employed to correctly predict the first five

eigenfrequencies of a violin top plate. We employ a

ð17� 1ÞNN, with 17 being the number of predicted

FIG. 3. (Color online) Correlation matrix between the mechanical parameters and the frequencies and amplitudes of the simulated FRF. The correlation

coefficients are computed in all the dataset for the given spread in each parameter. Note how the damping parameters are extremely relevant for the ampli-

tude of the FRF yet not for the frequency. Moreover, it can be noted that the thickness variation has the same qualitative behavior as the density variation,

thus, having the same relevance for the frequency.
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eigenfrequencies plus two. The ð17� 1ÞMFNN is

extremely accurate in the estimation of the plate eigenfre-

quencies, yielding R2 ¼ 0:99.

Conversely, the prediction of the amplitudes with a

ð17� 1ÞMFNN topology yields R2 ¼ 0:83. To achieve a

better prediction accuracy, we, thus, tune the hyperpara-

meters of this MFNN. The procedure is implemented by

varying L between 1 and 4 with a step of 1 andM between

2 and 64 with a step of 2. For each topology, we train the

MFNN and evaluate the R2 on the test set. The process is

repeated ten times, where the initial weights of the neurons

are randomized at the beginning of each training. The final

results are obtained by averaging the R2 scored by each

architecture. The outcomes of the hyperparameters tuning

indicate that the best MFNN for predicting the amplitudes is

a ð24� 2ÞNN, yielding R2 ¼ 0:94.

Figure 4 shows the train, test, and validation losses as

a function of the number of epochs obtained when ð64� 4Þ
and ð24� 2ÞNNs are used to estimate the FRF amplitude,

namely, the top and the bottom of the figure, respectively.

It can be noted that the first network is too complex for the

training data, and, thus, overfitting occurs. Indeed, the vali-

dation and test losses reach a constant high value after

three epochs. Conversely, the discrepancy between the

losses is acceptable for the second network, thus, avoiding

overfitting and providing the best prediction for the

amplitudes.

B. Application of the method

The FRF2Params method is employed to estimate the

material parameters of a set of ten classical guitar plates of

Norway spruce. The plates come in book-matched pairs.

Therefore, we will denote them with respect to the pair they

belong to, e.g., 1L, 1R, 2L, 2R, etc., Figure 5 shows the pic-

tures of the samples employed in the experimental valida-

tion. Their dimensions can be found in the supplementary

material.1 It must be noted that the plates were thicknessed

by the provider in an industrial sander to a nominal dimen-

sion; however, they exhibit a degree of variation inherent to

the sanding process. The plates were kept in a room in a

museum, which, despite not being humidity-controlled, has

a rather stable humidity level of 45%. Most of the plates

exhibit an irregular geometry: In particular, (i) the pairs

{1R,1L} and {4R,4L} display relevant irregularities at their

corners; (ii) plates 2L and 3L show moderate imperfections;

and (iii) the rest do not show relevant defects.

Figure 6 shows the evolution of the optimisation cost

function L̂2 for one of the plates and, as insets, the pairs

(fi, ai) measured and estimated by the algorithm at initial

and final steps, starting from the nominal values and

Caldersmith’s formulas. It can be seen here how the optimi-

sation method is “stuck” for some time in local minima and

how it eventually manages to escape and continuously

improve the estimation of the material parameters. After ca.

300 iterations, the optimisation plateaus, which signals the

FIG. 4. (Color online) (Left) Train, test, and validation losses versus the epoch number for a ð64� 4ÞMFNN. The model is too complex for the training

data. As a result, overfitting is not avoided, and the mean squared error on the validation set, i.e., the best validation performance, is high. (Right) Train, test,

and validation losses versus the epoch number for a ð24� 2ÞMFNN. The expressivity of the model meets the complexity of the training data. Therefore, the

discrepancy between the losses stays acceptable until the plateau is reached and the early stopping criteria are triggered, thus, avoiding overfitting and pro-

viding the best performance for the amplitudes.

FIG. 5. (Color online) Pictures of the ten boards used to test the method, ordered by the pairs that were provided by the wood handler.
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end of the optimisation process. It is possible to appreciate

the great accuracy attained by the algorithm in estimating

the eigenfrequencies, whereas a larger error is observable

for the amplitude. This is expected, as (i) the Rayleigh

damping model is known to be not accurate, despite the fact

that no better alternative can be found in FEM simulation,

and (ii) the amplitude is not explicitly modeled in the defini-

tion of the cost function, but only in the mode matching

procedure.

The soundness of the estimated material parameters is

evaluated by comparing the measured FRF to a simulated

FRF, which is computed numerically using as inputs the

estimates provided by FRF2Params. Two different metrics

are computed to support the comparison. The first metric is

the frequency response assurance criterion (FRAC), also

known as FDAC (Heylen and Lammens, 1996; Viala et al.,
2021), which provides a measure of similarity between two

FRFs. The FRAC yields a value in the interval ½0; 1�, where

1 means total similarity, and 0 corresponds to no similarity.

The second metric is the normalized mean squared error

(NMSE) between the normalized amplitudes of the FRFs,

computed as

NMSEðŷ; yÞ ¼ jjŷ � yjj22
jjŷjj22

; (14)

where jj 	 jj2 is the l2 norm, ŷ is the measured FRF, and y is

its estimate. The NMSE is usually reported in dB.

Figure 7(a) summarizes the results in terms of NMSE

(yellow bars) and FRAC (blue bars) between simulated and

experimental FRFs. The best estimations are obtained for

plates 2L, 2R, 5L, and 5R, which all display a great

regularity in the geometry. This is expected: In this applica-

tion, the NNs are not suited to predict the vibrational fea-

tures of irregular plates, as they are trained on a dataset of

regular plates with variable size and material parameters.

Figure 7(b) shows the normalized mobility FRF of plate

2R (solid black line) and the normalized simulated FRFs of

a plate with the same geometry of plate 2R and the material

parameters identified using either FRF2Params (dashed red

line) or the theoretical Caldersmith’s equations (dashed blue

line). The gray areas highlight the most important differ-

ences between the measured FRF and the one obtained with

Caldersmith’s equations. Our method matches the measured

FRF better than the theoretical prediction not only in the

low modes (particularly the first), but up to the 12th peak,

from which we conclude that our estimation is more accu-

rate than the latter.

The actual values of the identified material parameters

are given as supplementary material1 to not burden the text,

but it is worth noting the mean values of the ten samples for

the most relevant parameters. The mean longitudinal stiff-

ness is hELi ¼ 11:1 6 1:8 GPa, whereas the mean density

for the plates is hqi ¼ 420 6 24 kg m�3. The error associated

with each plate depends on the material parameter opti-

mised, with a rather accurate fit for the longitudinal stiffness

with an error of 3%, but rather poor for the irrelevant varia-

bles: up to 60% in the estimation of the tangential stiffness

for plate 5R.

To account for the geometric uncertainties associated

with the thickness, we vary the density of the plates in a

Gaussian manner and compute the associated best mechani-

cal parameters for each of these realisations. This method

allows us to obtain an estimate of the error associated with

FIG. 6. (Color online) Evolution of the cost function during the optimisation process of the method. (Insets) The initial and final sets of frequency-amplitude

pairs in the measured and the final optimised material parameters.

736 J. Acoust. Soc. Am. 154 (2), August 2023 Badiane et al.

https://doi.org/10.1121/10.0020559

 26 January 2024 09:33:20

https://doi.org/10.1121/10.0020559


density based on the sensitivity of the tools used to measure

the dimensions and the weight of the plates.

VI. CONCLUSIONS

This article presents a novel data-driven technique to

characterize wooden thin plates. The technique is called

FRF2Params and allows the simultaneous estimate of plate

material parameters starting from a single FRF, the geome-

try of the plate, and its density. Once the FRF is acquired,

the method only requires the peaks of the measured FRF,

without any need of further modal analysis.

The use of NNs provides us with a quick and reliable esti-

mation of the plate vibrational properties, thus, allowing

FRF2Params to be faster and easier to use than classical FEM

updating while keeping a comparable accuracy. Thanks to

these desirable features, this method can open the door to a

new way of designing stringed instruments starting from the

knowledge of the wood sample properties. As far as we know,

such an approach is still not standard in instrument making.

An aspect that we have not thoughtfully considered is

the role of the moisture content of the wood in the estima-

tion of the mechanical parameters. When varying the mois-

ture content, the density and all the other elastic properties

vary accordingly. See Viala (2018) and references therein

for an in-depth discussion. Our method works, in principle,

for any moisture content but was only tested in the rather

standard climatic conditions found inside a museum. Using

our method in a climate-controlled room would be an excel-

lent way to test the empirical laws that relate mechanical

parameters to moisture content.

We apply the methodology to rectangular spruce plates

because of their simple geometry and their wide employment

in stringed instrument making. As it stands, the method only

works for this particular geometry and wood species. Different

materials, in particular, woods with higher density, present a

different modal density in the low-frequency range and need to

be dealt with in a per basis way.

The generalisation of this method to arbitrary woods

and geometries poses two very distinct challenges: First,

one needs to be able to predict the FRF with a NN.

Increasing the number of parameters and the distribution of

values of those is only a technical problem that can be

solved with a combination of more data and a better archi-

tecture. Recent results in complete instruments make us con-

fident in the feasibility of the task. Second, one needs to

create minimisation algorithms that work in general for dif-

ferent kinds of woods and geometries, that is, for different

shapes of the FRF. This is more complex since there is a

qualitative change on the relation between the frequencies

and amplitudes of the FRF when the material changes

widely. Developing such a general method would probably

involve a more complex modal fitting of the FRF, not just

frequency/amplitude pairs. As such, the model will be far

more dependent on the damping model used in the simula-

tions, and a better model than Rayleigh damping will be

needed (Viala et al., 2021). Developing a more complete

understanding of damping is probably one of the most rele-

vant areas of wood science.
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FIG. 7. (Color online) (a) FRAC (in blue) and NMSE (in yellow) between the experimental FRF of each plate and the corresponding simulated FRF using

the material properties obtained with the FRF2Params method. (b) Normalized FRF of plate 2R (solid black line) and normalized simulated FRFs of a plate

with the same geometry of plate 2R and the material parameters identified with FRF2Params (dashed red line) and Caldersmith’s equations (dashed blue

line). The gray areas highlight the discrepancy between the measured FRF and the FRF obtained with Caldersmith’s equations. It is worth noting that such

discrepancy is significantly reduced when FRF2Params is used.
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measured dimensions and weight of the spruce plates used in the experi-

ments and for the estimated mechanical parameters of the spruce plates

used in the experiments.
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