63 research outputs found

    Estimation of Aneurysm Wall Motion from 4D Computerized Tomographic Angiography Images

    Get PDF
    It is widely accepted that wall shear stressis associated to aneurysm formation, growthand rupture. Early identification of potential risk factors may contribute to decide the treatment and improve patient care. Previous studies have shown associations between high aneurysm wall shear stress values and both elevated risk of rupture and localization of regions of aneurysm progression. Based on the assumption that damaged regions of the endothelium have different mechanical properties, regions with differentiated wall displacement amplitudes are expected. A previous approach based on the analysis ofbidimensional dynamic tomographic angiography images at a limited number of points during the cardiac cycle showed only small displacements in some patients using that simplified and semi-automatic low resolution methodology. The purpose of this work is to overcome some of those limitations. High time and spatial resolution four dimensional computerized tomographic angiography images of cerebral aneurysms were acquired and analyzed in order to identify and characterize wall motion. Images were filtered andsegmented at nineteentime points during the cardiac cycle.An average image was computed to generate the vascular model. Anunstructured mesh of tetrahedral elements was generated using an advancing front technique. A finite element blood flow simulationwas carried out under personalized pulsatile flow conditions. A fuzzy c-means clustering algorithm was used to estimate regions that exhibit wall motion within the aneurysm sac. A good correlation between localization of regions of elevated wall shear stress and regionsexhibiting wall motion was found.Fil: Castro, Marcelo Adrian. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ahumada Olivares, María C.. Universidad Favaloro; ArgentinaFil: Putman, Christopher M. . Inova Fairfax Hospital. Department of Interventional Neuroradiology; Estados UnidosFil: Cebral, Juan R.. George Mason University. Department of Computational and Data Sciences; Estados Unido

    Parallel Advancing Front Grid Generation

    No full text
    . A parallel advancing front scheme has been developed. The domain to be gridded is first subdivided spatially using a relatively coarse octree. Boxes are then identified and gridded in parallel. A scheme that resembles closely the advancing front technique on scalar machines is recovered by only considering the boxes of the active front that generate small elements. The procedure has been implemented on the SGI Origin class of machines using the shared memory paradigm. Timings for a variety of cases show speedups similar to those obtained for flow codes. The procedure has been used to generate grids in excess of a hundred million elements. Keywords. Unstructured Grid Generation, Parallel Computing, CFD. 1. INTRODUCTION The widespread availability of parallel machines with large memory, solvers that can harness the power of these machines, and the desire to model in ever increasing detail geometrical and physical features has lead to a steady increase in the number of points used in..

    Quantification of the Rupture Potential of Patient-Specific Intracranial Aneurysms under Contact Constraints

    No full text
    Intracranial aneurysms (IAs) are localized enlargements of cerebral blood vessels that cause substantial rates of mortality and morbidity in humans. The rupture possibility of these aneurysms is a critical medical challenge for physicians during treatment planning. This treatment planning while assessing the rupture potential of aneurysms becomes more complicated when they are constrained by an adjacent structure such as optic nerve tissues or bones, which is not widely studied yet. In this work, we considered and studied a constitutive model to investigate the bio-mechanical response of image-based patient-specific IA data using cardiovascular structural mechanics equations. We performed biomechanical modeling and simulations of four different patient-specific aneurysms’ data (three middle cerebral arteries and one internal carotid artery) to assess the rupture potential of those aneurysms under a plane contact constraint. Our results suggest that aneurysms with plane contact constraints produce less or almost similar maximum wall effective stress compared to aneurysms with no contact constraints. In our research findings, we observed that a plane contact constraint on top of an internal carotid artery might work as a protective wall due to the 16.6% reduction in maximum wall effective stress than that for the case where there is no contact on top of the aneurysm

    Hemodynamics before and after bleb formation in cerebral aneurysms

    No full text
    We investigate whether blebs in cerebral aneurysms form in regions of low or high wall shear stress (WSS), and how the intraaneurysmal hemodynamic pattern changes after bleb formation. Seven intracranial aneurysms harboring well defined blebs were selected from our database and subject-specific computational models were constructed from 3D rotational angiography. For each patient, a second anatomical model representing the aneurysm before bleb formation was constructed by smoothing out the bleb. Computational fluid dynamics simulations were performed under pulsatile flow conditions for both models of each aneurysm. In six of the seven aneurysms, the blebs formed in a region of elevated WSS associated to the inflow jet impaction zone. In one, the bleb formed in a region of low WSS associated to the outflow zone. In this case, the inflow jet maintained a fairly concentrated structure all the way to the outflow zone, while in the other six aneurysms it dispersed after impacting the aneurysm wall. In all aneurysms, once the blebs formed, new flow recirculation regions were formed inside the blebs and the blebs progressed to a state of low WSS. Assuming that blebs form due to a focally damaged arterial wall, these results seem to indicate that the localized injury of the vessel wall may be caused by elevated WSS associated with the inflow jet. However, the final shape of the aneurysm is probably also influenced by the peri-aneurysmal environment that can provide extra structural support via contact with structures such as bone or dura matter

    Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics

    No full text
    • …
    corecore