26 research outputs found

    A novel truncated form of apolipoprotein A-I transported by dense LDL is increased in diabetic patients

    Get PDF
    Diabetic (DM) patients have exacerbated atherosclerosis and high CVD burden. Changes in lipid metabolism, lipoprotein structure, and dysfunctional HDL are characteristics of diabetes. Our aim was to investigate whether serum ApoA-I, the main protein in HDL, was biochemically modified in DM patients. By using proteomic technologies, we have identified a 26 kDa ApoA-I form in serum. MS analysis revealed this 26 kDa form as a novel truncated variant lacking amino acids 1-38, ApoA-IΔ(1-38). DM patients show a 2-fold increase in ApoA-IΔ(1-38) over nondiabetic individuals. ApoA-IΔ(1-38) is found in LDL, but not in VLDL or HDL, with an increase in LDL3 and LDL4 subfractions. To identify candidate mechanisms of ApoA-I truncation, we investigated potentially involved enzymes by in silico data mining, and tested the most probable molecule in an established animal model of diabetes. We have found increased hepatic cathepsin D activity as one of the potential proteases involved in ApoA-I truncation. Cathepsin D-cleaved ApoA-I exhibited increased LDL binding affinity and decreased antioxidant activity against LDL oxidation. In conclusion, we show for the first time: a) presence of a novel truncated ApoA-I form, ApoA-IΔ(1-38), in human serum; b) ApoA-IΔ(1-38) is transported by LDL; c) ApoA-IΔ(1-38) is increased in dense LDL fractions of DM patients; and d) cathepsin D-ApoA-I truncation may lead to ApoA-IΔ(1-38) binding to LDLs, increasing their susceptibility to oxidation and contributing to the high cardiovascular risk of DM patients. This research was originally published in Lipid Research. A novel truncated form of apolipoprotein A-I transported by dense LDL is increased in diabetic patients. Journal of Lipid Research. 2015. 56: 1762-1773 © the American Society for Biochemistry and Molecular Biology.Peer Reviewe

    Spanish Cell Therapy Network (TerCel): 15 years of successful collaborative translational research

    Get PDF
    In the current article we summarize the 15-year experience of the Spanish Cell Therapy Network (TerCel), a successful collaborative public initiative funded by the Spanish government for the support of nationwide translational research in this important area. Thirty-two research groups organized in three programs devoted to cardiovascular, neurodegenerative and immune-inflammatory diseases, respectively, currently form the network. Each program has three working packages focused on basic science, pre-clinical studies and clinical application. TerCel has contributed during this period to boost the translational research in cell therapy in Spain, setting up a network of Good Manufacturing Practice–certified cell manufacturing facilities– and increasing the number of translational research projects, publications, patents and clinical trials of the participating groups, especially those in collaboration. TerCel pays particular attention to the public-private collaboration, which, for instance, has led to the development of the first allogeneic cell therapy product approved by the European Medicines Agency, Darvadstrocel. The current collaborative work is focused on the development of multicenter phase 2 and 3 trials that could translate these therapies to clinical practice for the benefit of patients

    Clinical characteristics and evaluation of LDL-cholesterol treatment of the Spanish Familial Hypercholesterolemia Longitudinal Cohort Study (SAFEHEART)

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>Familial hypercholesterolemia (FH) patients are at high risk for premature coronary heart disease (CHD). Despite the use of statins, most patients do not achieve an optimal LDL-cholesterol goal. The aims of this study are to describe baseline characteristics and to evaluate Lipid Lowering Therapy (LLT) in FH patients recruited in SAFEHEART.</p> <p>Methods and Results</p> <p>A cross-sectional analysis of cases recruited in the Spanish FH cohort at inclusion was performed. Demographic, lifestyle, medical and therapeutic data were collected by specific surveys. Blood samples for lipid profile and DNA were obtained. Genetic test for FH was performed through DNA-microarray. Data from 1852 subjects (47.5% males) over 19 years old were analyzed: 1262 (68.1%, mean age 45.6 years) had genetic diagnosis of FH and 590 (31.9%, mean age 41.3 years) were non-FH. Cardiovascular disease was present in 14% of FH and in 3.2% of non-FH subjects (P < 0.001), and was significantly higher in patients carrying a null mutation compared with those carrying a defective mutation (14.87% vs. 10.6%, respectively, P < 0.05). Prevalence of current smokers was 28.4% in FH subjects. Most FH cases were receiving LLT (84%). Although 51.5% were receiving treatment expected to reduce LDL-c levels at least 50%, only 13.6% were on maximum statin dose combined with ezetimibe. Mean LDL-c level in treated FH cases was 186.5 mg/dl (SD: 65.6) and only 3.4% of patients reached and LDL-c under 100 mg/dl. The best predictor for LDL-c goal attainment was the use of combined therapy with statin and ezetimibe.</p> <p>Conclusion</p> <p>Although most of this high risk population is receiving LLT, prevalence of cardiovascular disease and LDL-c levels are still high and far from the optimum LDL-c therapeutic goal. However, LDL-c levels could be reduced by using more intensive LLT such as combined therapy with maximum statin dose and ezetimibe.</p

    Clinical characteristics and evaluation of LDL-cholesterol treatment of the Spanish Familial Hypercholesterolemia Longitudinal Cohort Study (SAFEHEART)

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>Familial hypercholesterolemia (FH) patients are at high risk for premature coronary heart disease (CHD). Despite the use of statins, most patients do not achieve an optimal LDL-cholesterol goal. The aims of this study are to describe baseline characteristics and to evaluate Lipid Lowering Therapy (LLT) in FH patients recruited in SAFEHEART.</p> <p>Methods and Results</p> <p>A cross-sectional analysis of cases recruited in the Spanish FH cohort at inclusion was performed. Demographic, lifestyle, medical and therapeutic data were collected by specific surveys. Blood samples for lipid profile and DNA were obtained. Genetic test for FH was performed through DNA-microarray. Data from 1852 subjects (47.5% males) over 19 years old were analyzed: 1262 (68.1%, mean age 45.6 years) had genetic diagnosis of FH and 590 (31.9%, mean age 41.3 years) were non-FH. Cardiovascular disease was present in 14% of FH and in 3.2% of non-FH subjects (P < 0.001), and was significantly higher in patients carrying a null mutation compared with those carrying a defective mutation (14.87% vs. 10.6%, respectively, P < 0.05). Prevalence of current smokers was 28.4% in FH subjects. Most FH cases were receiving LLT (84%). Although 51.5% were receiving treatment expected to reduce LDL-c levels at least 50%, only 13.6% were on maximum statin dose combined with ezetimibe. Mean LDL-c level in treated FH cases was 186.5 mg/dl (SD: 65.6) and only 3.4% of patients reached and LDL-c under 100 mg/dl. The best predictor for LDL-c goal attainment was the use of combined therapy with statin and ezetimibe.</p> <p>Conclusion</p> <p>Although most of this high risk population is receiving LLT, prevalence of cardiovascular disease and LDL-c levels are still high and far from the optimum LDL-c therapeutic goal. However, LDL-c levels could be reduced by using more intensive LLT such as combined therapy with maximum statin dose and ezetimibe.</p

    International conference on the healthy effect of virgin olive oil

    Get PDF
    Ageing represents a great concern in developed countries because the number of people involved and the pathologies related with it, like atherosclerosis, morbus Parkinson, Alzheime's disease, vascular dementia, cognitive decline, diabetes and cancer. Epidemiological studies suggest that a Mediterranean diet (which is rich in virgin olive oil) decreases the risk of cardiovascular disease. The Mediterranean diet, rich in virgin olive oil, improves the major risk factors for cardiovascular disease, such as the lipoprotein profile, blood pressure, glucose metabolism and antithrombotic profile. Endothelial function, inflammation and oxidative stress are also positively modulated. Some of these effects are attributed to minor components of virgin olive oil. Therefore, the definition of the Mediterranean diet should include virgin olive oil. Different observational studies conducted in humans have shown that the intake of monounsaturated fat may be protective against age-related cognitive decline and Alzheimer's disease. Microconstituents from virgin olive oil are bioavailable in humans and have shown antioxidant properties and capacity to improve endothelial function. Furthermore they are also able to modify the haemostasis, showing antithrombotic properties. In countries where the populations fulfilled a typical Mediterranean diet, such as Spain, Greece and Italy, where virgin olive oil is the principal source of fat, cancer incidence rates are lower than in northern European countries. The protective effect of virgin olive oil can be most important in the first decades of life, which suggests that the dietetic benefit of virgin olive oil intake should be initiated before puberty, and maintained through life. The more recent studies consistently support that the Mediterranean diet, based in virgin olive oil, is compatible with a healthier ageing and increased longevity. However, despite the significant advances of the recent years, the final proof about the specific mechanisms and contributing role of the different components of virgin olive oil to its beneficial effects requires further investigations. © 2005 Blackwell Publishing Ltd

    The markers of inflammation and endothelial dysfunction in correlation with glycated haemoglobin are present in type 2 diabetes mellitus patients but not in their relatives

    No full text
    PMID: 18347976.-- Final full-text version of the paper available at: 10.1007/s10719-008-9118-8 or http://www.springerlink.com/content/41v66012055486r0/The aim of this study is to test several biomarkers of inflammation, of endothelial dysfunction, glycated haemoglobin, and their reflection in arterial dilatation, in patients with type 2 diabetes mellitus and in their relatives, in order to demonstrate if relatives present markers as a form of precocious indicators of diabetes mellitus. Individuals between 30 and 55 years of age and without clinical arterial disease were divided in three groups: type 2 diabetes mellitus patients without complications (12 men and 18 women); first degree relatives of type 2 diabetes mellitus (14 men and 20 women); and control individuals (9 men and 16 women). Body composition was measured with a bioelectrical impedance analyzer and endothelial function with an eco-Doppler device. We determined glucose, insulin, C-peptide, glycated haemoglobin, fibrinogen, E-selectin, P-selectin, soluble intercellular cell adhesion molecule-1 (ICAM-1), soluble vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP) in plasma. We also studied endothelium independent dilatation and endothelium dependent dilatation. The results: ICAM-1 and VCAM-1 were significantly higher in the diabetic group (237.5 ± 43.4 and 692.5 ± 168.6 ng/l) than in controls (197.4 ± 51.2 and 573.5 ± 121.1 ng/l, p = 0.011 and 0.013, respectively), but were not higher in the family group (224.5 ± 45.2 and 599.8 ± 150.4 ng/l). CRP was higher in the diabetic group (3.35 ± 3.27 mg/l) than in the other groups (1.28 ± 1.29 and 1.61 ± 1.54 mg/l, p = 0.002) and correlated with glycated haemoglobin. The non-endothelium mediated dilatation was lesser in the diabetic group than in the family group (17.3 ± 6.1 vs. 24 ± 8, p = 0.029) and controls. In conclusion patients with uncomplicated type 2 diabetes, but not their relatives, have biochemical markers of sub-clinical inflammation in relationship with glycated haemoglobin and dysfunction of the endothelial cells markers. In these patients endothelium independent dilatation is more affected than endothelium dependent dilatation.Peer reviewe

    Spanish Cell Therapy Network (TerCel): 15 years of successful collaborative translational research

    Get PDF
    On behalf of TerCelIn the current article we summarize the 15-year experience of the Spanish Cell Therapy Network (TerCel), a successful collaborative public initiative funded by the Spanish government for the support of nationwide translational research in this important area. Thirty-two research groups organized in three programs devoted to cardiovascular, neurodegenerative and immune-inflammatory diseases, respectively, currently form the network. Each program has three working packages focused on basic science, pre-clinical studies and clinical application. TerCel has contributed during this period to boost the translational research in cell therapy in Spain, setting up a network of Good Manufacturing Practice–certified cell manufacturing facilities– and increasing the number of translational research projects, publications, patents and clinical trials of the participating groups, especially those in collaboration. TerCel pays particular attention to the public-private collaboration, which, for instance, has led to the development of the first allogeneic cell therapy product approved by the European Medicines Agency, Darvadstrocel. The current collaborative work is focused on the development of multicenter phase 2 and 3 trials that could translate these therapies to clinical practice for the benefit of patients.This manuscript has been supported by the Instituto de Salud Carlos III (ISCIII) through the project “RD16/0011/0001: Red de Terapia Celular”, from the sub-program RETICS, integrated in the “Plan Estatal de I+D+I 2013-2016” and co-financed by the European Regional Development Fund “A way to make Europe”.Peer reviewe
    corecore