7,332 research outputs found

    Non-existence of an invariant measure for a homogeneous ellipsoid rolling on the plane

    Full text link
    It is known that the reduced equations for an axially symmetric homogeneous ellipsoid that rolls without slipping on the plane possess a smooth invariant measure. We show that such an invariant measure does not exist in the case when all of the semi-axes of the ellipsoid have different length.Comment: v2: Minor changes after journal review. This text uses the theory developed in arXiv:1304.1788 for the specific example of a homogeneous ellipsoid rolling on the plan

    Unimodularity and preservation of volumes in nonholonomic mechanics

    Full text link
    The equations of motion of a mechanical system subjected to nonholonomic linear constraints can be formulated in terms of a linear almost Poisson structure in a vector bundle. We study the existence of invariant measures for the system in terms of the unimodularity of this structure. In the presence of symmetries, our approach allows us to give necessary and sufficient conditions for the existence of an invariant volume, that unify and improve results existing in the literature. We present an algorithm to study the existence of a smooth invariant volume for nonholonomic mechanical systems with symmetry and we apply it to several concrete mechanical examples.Comment: 37 pages, 3 figures; v3 includes several changes to v2 that were done in accordance to the referee suggestion

    The inhomogeneous Suslov problem

    Full text link
    We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal axis of inertia of the body, then the reduced equations are integrable and, in the generic case, possess a smooth invariant measure. Interestingly, in this generic case, the first integral that permits integration is transcendental and the density of the invariant measure depends on the angular velocities. We also study the Painlev\'e property of the solutions.Comment: 10 pages, 5 figure

    Histone Mutants Separate R Loop Formation from Genome Instability Induction

    Get PDF
    R loops have positive physiological roles, but they can also be deleterious by causing genome instability, and the mechanisms for this are unknown. Here we identified yeast histone H3 and H4 mutations that facilitate R loops but do not cause instability. R loops containing single-stranded DNA (ssDNA), versus RNA-DNA hybrids alone, were demonstrated using ssDNA-specific human AID and bisulfite. Notably, they are similar size regardless of whether or not they induce genome instability. Contrary to mutants causing R loop-mediated instability, these histone mutants do not accumulate H3 serine-10 phosphate (H3S10-P). We propose a two-step mechanism in which, first, an altered chromatin facilitates R loops, and second, chromatin is modified, including H3S10-P, as a requisite for compromising genome integrity. Consistently, these histone mutations suppress the high H3S10 phosphorylation and genomic instability of hpr1 and sen1 mutants. Therefore, contrary to what was previously believed, R loops do not cause genome instability by themselves.European Research Council ERC2014 AdG669898Ministerio de Economía y Competitividad BFU2013-42918-P, BFU2016-75058-

    Reaction Dynamics for the Systems 7Be,8B + 208Pb at Coulomb Barrier Energies

    Get PDF
    In this contribution we describe the first results obtained for the investigation of the elastic scattering process in the reactions induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at Coulomb barrier energies. The experimental data were analyzed within the framework of the optical model in order to extract the total reaction cross section. The comparison with data available in literature for reactions induced on 208Pb by light ions in the mass range A = 6-8 shows that the loosely-bound 8B has the largest reactivity

    Antifungal effect and reduction of Ulmus minor symptoms to Ophiostoma novo-ulmi by carvacrol and salicylic acid

    Get PDF
    There are still no effective means to control Dutch elm disease (DED), caused by the vascular fungi Ophiostoma ulmi and O. novo-ulmi. Plant phenolics may provide a new strategy for DED control, given their known antifungal activity against pathogens and their involvement in plant defence mechanisms. The in vitro antifungal activity of salicylic acid, carvacrol, thymol, phenol, o-cresol, m-cresol, p-cresol, and 2,5-xylenol against the DED pathogens was tested. Also, the protective effect of watering Ulmus minor seedlings with these compounds was tested against O. novo-ulmi. Salicylic acid, carvacrol, and thymol showed the strongest antifungal in vitro activity, while carvacrol and salicylic acid provided the strongest in vivo protection against O. novo-ulmi (63 and 46% reduction of leaf wilting symptoms with respect to controls, respectively). The effect of the treatments on tree phenology was low, and a significant negative relation was observed between the number of days to bud burst and the leaf wilting symptoms after inoculation, probably determined by genetic differences among the elm tree progenies used. The treatments with salicylic acid, carvacrol and thymol induced the highest shift in phenolic metabolite profile with respect to control trees. The protective effect of carvacrol and salicylic acid is discussed in terms of their combined activity as antifungal compounds and as inductors of tree defence responses

    First Proteomic Approach to Identify Cell Death Biomarkers in Wine Yeasts during Sparkling Wine Production

    Get PDF
    Apoptosis and later autolysis are biological processes which take place in Saccharomyces cerevisiae during industrial fermentation processes, which involve costly and time-consuming aging periods. Therefore, the identification of potential cell death biomarkers can contribute to the creation of a long-term strategy in order to improve and accelerate the winemaking process. Here, we performed a proteomic analysis based on the detection of possible apoptosis and autolysis protein biomarkers in two industrial yeast strains commonly used in post-fermentative processes (sparkling wine secondary fermentation and biological aging) under typical sparkling wine elaboration conditions. Pressure had a negatively effect on viability for flor yeast, whereas the sparkling wine strain seems to be more adapted to these conditions. Flor yeast strain experienced an increase in content of apoptosis-related proteins, glucanases and vacuolar proteases at the first month of aging. Significant correlations between viability and apoptosis proteins were established in both yeast strains. Multivariate analysis based on the proteome of each process allowed to distinguish among samples and strains. The proteomic profile obtained in this study could provide useful information on the selection of wine strains and yeast behavior during sparkling wine elaboration. Additionally, the use of flor yeasts for sparkling wine improvement and elaboration is proposed

    A Differential Proteomic Approach to Characterize the Cell Wall Adaptive Response to CO2 Overpressure during Sparkling Wine-Making Process

    Get PDF
    In this study, a first proteomic approach was carried out to characterize the adaptive response of cell wall-related proteins to endogenous CO2 overpressure, which is typical of second fermentation conditions, in two wine Saccharomyces cerevisiae strains (P29, a conventional second fermentation strain, and G1, a flor yeast strain implicated in sherry wine making). The results showed a high number of cell wall proteins in flor yeast G1 under pressure, highlighting content at the first month of aging. The cell wall proteomic response to pressure in flor yeast G1 was characterized by an increase in both the number and content of cell wall proteins involved in glucan remodeling and mannoproteins. On the other hand, cell wall proteins responsible for glucan assembly, cell adhesion, and lipid metabolism stood out in P29. Over-represented proteins under pressure were involved in cell wall integrity (Ecm33p and Pst1p), protein folding (Ssa1p and Ssa2p), and glucan remodeling (Exg2p and Scw4p). Flocculation-related proteins were not identified under pressure conditions. The use of flor yeasts for sparkling wine elaboration and improvement is proposed. Further research based on the genetic engineering of wine yeast using those genes from protein biomarkers under pressure alongside the second fermentation in bottle is required to achieve improvements
    corecore