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SUMMARY

R loops have positive physiological roles, but they
can also be deleterious by causing genome insta-
bility, and the mechanisms for this are unknown.
Here we identified yeast histone H3 and H4 muta-
tions that facilitate R loops but do not cause
instability. R loops containing single-stranded DNA
(ssDNA), versus RNA-DNA hybrids alone, were
demonstrated using ssDNA-specific human AID
and bisulfite. Notably, they are similar size regardless
of whether or not they induce genome instability.
Contrary to mutants causing R loop-mediated insta-
bility, these histone mutants do not accumulate H3
serine-10 phosphate (H3S10-P). We propose a two-
step mechanism in which, first, an altered chromatin
facilitates R loops, and second, chromatin is modi-
fied, including H3S10-P, as a requisite for compro-
mising genome integrity. Consistently, these histone
mutations suppress the high H3S10 phosphorylation
and genomic instability of hpr1 and sen1 mutants.
Therefore, contrary to what was previously believed,
R loops do not cause genome instability by them-
selves.

INTRODUCTION

Genome instability is a major threat to cell survival, along with

being the origin of multiple diseases including cancer. Metabolic

processes occurring on the DNA are important sources of

genome instability; failures in DNA replication or the DNA dam-

age response (DDR) are the most common cause (Aguilera and

Garcı́a-Muse, 2013). Transcription is an important source of

replication stalling and impairment, either directly by becoming

an obstacle to the progression of replication forks or indirectly

by generating harmful transcriptional byproducts such as

R loops (Castellano-Pozo et al., 2013; Gan et al., 2011; Wellinger

et al., 2006).

R loops, RNA-DNA hybrids and the displaced single-stranded

DNA (ssDNA), are formed in cis by the nascent RNA threading

back to hybridize with the template DNA strand. Although
R loops are intermediate structures in important biological pro-

cesses like immunoglobulin class switching or mitochondrial

replication, their uncontrolled formation can be a significant

cause of genome instability. Consequently, multiple cellular

mechanisms operate to prevent the deleterious effects of

R loops (Santos-Pereira and Aguilera, 2015). RNA binding and

processing factors, like THO, ASF/SF2, or AQR, and topoiso-

merases have key roles in preventing R loop formation (Domı́-

nguez-Sánchez et al., 2011; El Hage et al., 2010; Huertas and

Aguilera, 2003; Li and Manley, 2005; Sollier et al., 2014; Yang

et al., 2014); RNase H, Sen1/SETX, DDX19, and DDX23 in elim-

inating them (Hodroj et al., 2017; Mischo et al., 2011; Skourti-

Stathaki et al., 2014; Sridhara et al., 2017); andDNA repair mech-

anisms such as BRCA and Fanconi anemia in precluding their

DNA damaging effects (Bhatia et al., 2014; Garcı́a-Rubio et al.,

2015; Hatchi et al., 2015; Schwab et al., 2015). Elimination of

any one of these activities causes R loop accumulation and

genetic instability (Santos-Pereira and Aguilera, 2015).

Chromatin may constitute a barrier to many processes occur-

ring on the DNA, including transcription, replication, and DNA

repair. Post-translational modification of histones, mainly at the

unfolded N-terminal tails but also at the core, influences nucleo-

some dynamics by recruiting chromatin remodelers, histone

chaperones, and specific factors that facilitate or restrict access

to DNA (Tessarz and Kouzarides, 2014). Certainly, it is possible

that chromatin might control R loop formation or stability, among

many other processes; however, this has not been directly

tested as yet. In this sense, it has been shown that the histone

chaperone complex FACT is involved in precluding R loop accu-

mulation (Herrera-Moyano et al., 2014), but whether histones

themselves have a protective role over the genome preventing

harmful R loop buildup is still unknown.

To investigate this possibility, we screened a Saccharomyces

cerevisiae library of histone H3 and H4 point mutants to identify

mutations favoring the formation of R loops. Importantly, the

R loop accumulating mutants identified, as confirmed by genetic

andmolecular assays, do not lead to genome instability by them-

selves, but only when human activation-induced cytidine deam-

inase (AID) is ectopically overexpressed. This is not due to a

different size of the RNA-DNA hybrid, which is similar in wild-

type and R loop-accumulating strains, whether or not it

causes hyper-recombination. Instead, the lack of R loop-

associated genome instability correlates with the inability to

support histone H3 serine-10 phosphorylation. Notably, the
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Figure 1. Mutations in Histones H3 and H4 Increase Recombination in an AID-Dependent and RNase H1-Sensitive Manner

Schematic representation of pLZGAID plasmid used in the screening. Recombination frequencies in wild-type (H3WT or H4WT) andmutant strains carrying point

mutations or deletions in H3 (R53K, R49A,D28-31,D1-20, K9-23A,D1-24, E105Q, andD1-28) or H4 (G7A, E53A, K16Q,D17-20, K16A, T82A, K77R, A15S, R95A,

K5R, and K31Q) selected as positive candidates in the screening with (+) or without (�) AID or RNase H1 (RNH) overexpression (n = 3). Means and SEMare plotted

in all panels. *p % 0.05; **p % 0.01; ***p % 0.001 (two-tailed Student’s t test). See also Figure S1.
hyper-recombination phenotype of hpr1 and sen1 mutants is

suppressed by these histonemutations. Our study shows, there-

fore, that the R loop itself does not compromise genome integrity

unless a subsequent step of chromatin modification, linked to

histone H3 serine-10 phosphorylation in this case, occurs.

RESULTS

Identification of Histone H3 and H4 Mutations that
Facilitate R Loop Formation
We screened the Non-Essential Histone H3 and H4 Mutant

Collection of Saccharomyces cerevisiae (Dai et al., 2008) for his-

tone mutations that enhanced R loop accumulation. We used

human AID as a tool to detect R loops because AID targets cyti-

dines present in ssDNA inducing DNA damage (Chaudhuri et al.,

2003; Sohail et al., 2003). We have previously shown that AID

expression in R loop-accumulating yeast mutants increases

recombination and C-to-T transitions at the ssDNA, consistent

with its preferential action on the ssDNA displaced by the RNA

in the R loop (Gómez-González and Aguilera, 2007; Mischo
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et al., 2011). Therefore, we cloned AID under the GAL1p induc-

ible promoter in a centromeric plasmid containing the

leu2D30::lacZ::leu2D50 direct-repeat recombination system

L-lacZ (Figure 1). The new plasmid, pLZGAID, was used to trans-

form the Non-Essential Histone H3 and H4 Mutant Collection.

After the induction of AIDexpression by growth in galactose-con-

taining media, AID-mediated hyper-recombinant mutants were

screened in selective media lacking leucine to detect Leu+ re-

combinants (Figure S1A). Recombination frequencies were as-

sayed in the selected candidates with or without AID expression

and with or without RNase H1 overexpression to determine the

influence of R loops. RNase H1 specifically degrades the RNA

moiety of an RNA-DNA hybrid, eliminating the R loops (Crouch

et al., 2001). Eight histone H3mutants and eleven histone H4mu-

tants increased recombinationRfive times over wild-type levels

in thepresenceofAID, but only in six of theH3andsevenof theH4

mutants was recombination significantly AID dependent

(increased in the presence of AID) and RNase H1 sensitive (sup-

pressed by RNH1 overexpression), implying that it was R loop

dependent (Figure 1). We confirmed that this increase in



recombination was not due to the change of the carbon source,

from glucose to galactose, but to AID expression (Figure S1B).

Importantly, these histone mutants are not hyper-recombinant

per se, in contrast to previously identified R loop-accumulating

mutants such as hpr1D or sen1-1, where AID overexpression en-

hances a preexisting hyper-recombination phenotype (Gómez-

González and Aguilera, 2007; Mischo et al., 2011).

The histone mutations causing AID-dependent hyper-recom-

bination were preferentially located in the N-terminal H3 and

H4 histone tails. The H3 mutants contained mutations located

mainly in the first 28 residues. Deletion of these residues

(D1-28 or D1-24) or substitutions of the N-terminal tail lysines

9, 14, 18, and 23 to alanines (K9-23A) increased recombination

more than 105 times, exclusively under AID overexpression (Fig-

ure 1). The only H3 mutant with an AID-dependent hyper-recom-

binant phenotype not located in the N-terminal tail was the

replacement of the glutamic acid 105 present in the globular

domain by glutamine (E105Q). Mutants in H4 also tended to

accumulate in the N-terminal tail (D17-20, K5R, A15S, and

K16Q). Lysine 31 to glutamine (K31Q) conferred the strongest

hyper-recombination with a 108-fold increase compared to the

levels in the absence of AID (Figure 1). Therefore, from now on

we pursued our analysis with the N-terminal tail mutants

H3D1-28 and H3K9-23A from histone H3 and H4K31Q from his-

tone H4 as the representative mutants that cause genetic insta-

bility only when AID is expressed. Importantly, we confirmed by

chromatin immunoprecipitation (ChIP) analysis that the differ-

ences in AID-mediated instability observed between the wild-

type and these histone mutants are not caused by changes in

the ability of AID to be recruited to chromatin (Figure S1C).

Histone H3D1-28, H3K9-23A, and H4K31QMutants Only
Induce Different Types of Genome Instability in an AID-
Dependent Manner
To further analyze the AID-dependent hyper-recombination

observed in the selected histone mutants, we first confirmed it

in a chromosomal context using a recombination system based

on twomutated copies of theHIS3 gene placed in a direct-repeat

orientation in the right arm of chromosome XV (Figure 2A) (Agui-

lera and Klein, 1988). Recombination was measured as the fre-

quency of His+ colonies with or without AID and RNase H1 over-

expression. The results confirmed the data obtained with the

original pLZGAID plasmid used for the screening: a significant in-

crease in recombination uniquely observed in the presence of

AID (from 67- to 94-fold) that is RNase H sensitive (Figure 2A).

This result shows that the AID-dependent genetic instability

phenotype occurs in both chromosomal and plasmid systems.

To globally measure recombinogenic DNA damage in the cell,

we used a version of the Rad52 recombination factor fused to the

yellow fluorescent protein (YFP) (Lisby et al., 2001). A significant

increase in Rad52 foci was observed upon AID expression

(40%–80% above the levels in the absence of AID), and it was

fully suppressed by RNase H1 overexpression (Figure 2B).

Consistent with the AID-dependent hyper-recombination

observed in the plasmid and chromosomal systems, H3D1-28,

H3K9-23A, and the H4K31Q histone mutants did not increase

Rad52 foci unless AID was expressed (Figure 2B). These results

indicate that the action of AID on the ssDNA of R loops is not
limited to the recombination systems used but is general

throughout the genome.

The results on Rad52 foci and recombination frequencies sug-

gest that H3D1-28, H3K9-23A, and H4K31Q mutants do not

cause genetic instability by themselves. To confirm this, we per-

formed a broader analysis of genetic instability phenotypes that

included loss of heterozygosity (LOH), chromosome loss,

plasmid loss, mutagenicity, and DNA damage checkpoint acti-

vation (Figures 2C–2E and S2A). The three histone mutants

show LOH levels, as measured at theMAT locus in homozygous

diploid strains, similar or slightly lower than those of wild-type

cells and significantly lower than those of the hpr1D mutant, a

THO mutant used as a positive control (Figure 2C), a result that

can be extended to chromosome III loss, provided that 25%

(15 out of 59 independent clones) of the LOH events at the

MAT locus were due to chromosome loss, as determined by

qPCR (see STAR Methods). For a more precise analysis, we

analyzed the frequency of loss of the centromeric plasmid

pRS414, which allowed us to determine whether any possible

phenotype could be suppressed by RNase H1. As expected

from the chromosome loss results, the basal levels of plasmid

loss of the mutants were slightly lower or similar to wild-type

cells. Although only statistically significant in H3K9-23A, there

was a consistent increase in plasmid loss induced by AID

expression (1.8- to 2.5-fold increase) in the two H3 mutants

that was fully suppressed by RNase H1 (Figure 2D).

Spontaneous mutation levels, another measure of genome

instability, were determined for the chromosomal CYH2 locus

as the frequency of cyclohexymide-resistant colonies. The his-

tone mutants showed spontaneous mutation levels similar to

wild-type cells or even lower, except H4K31Q. Importantly,

mutation levels were significantly increased after AID expression

(2- to 3-fold above the levels in the absence of AID) (Figure 2E).

These phenotypes indicate that the DNA damage is induced

by AID. However, such damage neither causes a detectable

S-phase checkpoint activation, as determined by Rad53 phos-

phorylation (Figure S2A), nor affects cell-cycle progression or

recombination even in the presence of the dNTP-depleting

drug HU (Figures S2B and S3A). Consistently, these mutants

are not sensitive to genotoxic agents like MMS, HU, or UV light

(Figure S3B), with the exception of H3D1-28, as previously re-

ported (Dai et al., 2008). Taken together, these observations sug-

gest that the relevant characteristic of these histone mutants is

not to induce DNA damage but to facilitate the formation of the

AID substrate, ssDNA, consistent with the formation of R loops,

and as shown by the suppression of the AID-dependent pheno-

types by RNase H1 overexpression.

Histone H3D1-28, H3K9-23A, and H4K31Q Mutants
Accumulate R Loops
Once shown by different genetic assays that R loops should be

accumulating in the selected histone mutants, we decided to

directly detect RNA-DNA hybrids. For this, we performed DNA-

RNA immunoprecipitation (DRIP) analysis using theS9.6antibody

in theGCN4 and TPD3 genes, previously described to formRNA-

DNAhybrids (Castellano-Pozoet al., 2013;Chanet al., 2014;Her-

rera-Moyano et al., 2014), and in the long geneYLR454w fused to

the GAL1 promoter. The S9.6 signal in H3D1-28, H3K9-23A, and
Molecular Cell 66, 597–609, June 1, 2017 599
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Figure 2. Mutations in the H3 N-Terminal Tail and H4K31 Only Cause Genetic Instability in an AID-Dependent Manner

(A) Schematic representation of the chromosomal his3-based direct-repeat recombination system. Recombination frequencies with (+) or without (�) AID or

RNase H1 (RNH) overexpression (n = 3).

(B) Percentage of Rad52-YFP foci formation with (+) or without (�) AID or RNH overexpression (n = 3).

(C) Frequency of loss of heterozygosity (LOH) in the MAT locus at chromosome III (n = 6).

(D) Percentage of pRS414 centromeric plasmid loss with (+) or without (�) AID or RNase H1 (RNH) overexpression (n = 4).

(E) Frequency of spontaneous CYH2 mutation with (+) or without (�) AID overexpression (n = 4).

Experiments from (A)–(E) were performed in the H3WT, H3K9-23A, H3D1-28, H4WT, and H4K31Q mutants.

Means and SEMare plotted in (A), (B), (D), and (E), and themedian is plotted in (C). *p% 0.05; **p% 0.01; ***p% 0.001; ****p% 0.0001 (two-tailed Student’s t test).

See also Figures S2 and S3. n.d., not detected.
H4K31Q mutants was significantly higher than in the isogenic

wild-type strains and, as expected, disappeared after in vitro

RNase H treatment. Importantly, this occurred in asynchronous

(Figures 3A and S4), G1-, and S-synchronized cell cultures (Fig-

ure 3B), ruling out that this accumulation of RNA-DNA hybrids

was the result of a replication intermediate.
600 Molecular Cell 66, 597–609, June 1, 2017
To establish a direct correlation between the AID-dependent

increase in recombination observed in H3D1-28, H3K9-23A,

and H4K31Q mutants and the R loop accumulation, we per-

formed DRIP in the chromosomal his3 direct-repeat system

where we saw the hyper-recombination phenotype (Figure 2A).

We observed a significant accumulation of RNA-DNA hybrids
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(legend on next page)
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in the transcribed TRP1 gene located between the his3 repeats in

the three histone mutants analyzed (Figure 3C). Therefore, these

mutants indeed facilitate RNA-DNA hybrid formation, although

such hybrids do not activate the DDR and do not confer a detect-

able genome instability phenotype by themselves. The fact that

AID stimulates recombination in these mutants, as also previ-

ously shown for hpr1D mutants (Gómez-González and Aguilera

2007), implies that those RNA-DNA hybrids are accompanied

by the ssDNA susceptible to being modified by AID. Therefore,

such histone mutants indeed accumulate full R loop structures

containing the RNA-DNA hybrid and the displaced ssDNA.

Since lysines were systematically replaced by alanines, argi-

nines, and glutamines in the histone mutant collection that we

screened, we wanted to test if other mutations in histone H3K9-

23andH4K31enhancedR loops.Notably, theAID-dependent in-

crease in recombination was not observed in the H3K9-23Q,

H3K9-23R, H4K31A, and H4K31R mutants, indicating that it

was specific to H3K9-23A and H4K31Q mutants (Figure 3D).

Consistently, DRIP analysis in the GCN4 gene confirmed that

H3K9-23A and H4K31Qmutations increased RNA-DNA hybrids,

whereas the other four did not (Figure 3E). Therefore, changes of

H3K9-23 and H4K31 to A and Q, respectively, and not to other

amino acids, make chromatin R loop prone.

RLoopsAreSimilar in Size Regardless ofWhether or Not
They Induce Genome Instability
One possible explanation of why the R loops observed in the

selected histone mutants do not induce genome instability by

themselves is that they are shorter than those that compromise

genome integrity like the R loops observed in hpr1D mutants.

Therefore, we determined R loop length by bisulfite mutagenesis

and subsequent amplification and sequencing of single mole-

cules (Yu et al., 2003) in wild-type, histone mutants, and

hpr1D. Due to the low frequency of R loops, an enrichment

method with one converted primer (C; which anticipates

C-to-U changes provoked by bisulfite) and one conventional

primer (N; native) was used for the PCR to preferentially amplify

the DNA molecules containing RNA-DNA hybrids, following pre-

viously reported strategies (Figure 4A) (Yu et al., 2003). When the

converted primer was designed to align the non-transcribed

strand (NTS), which is predicted to be single stranded in an

R loop (Figure 4A), PCR amplification was only detected repro-

ducibly at the 30 end of the gene (N1C3) (Figure 4B). In agreement

with the transcribed strand (TS) being protected by the paired

RNA, the complementary reaction with a converted primer align-

ing to the TS did not lead to any PCR amplification (C4N5) (Fig-

ure 4B), indicating that these signals were indeed due to R loop

formation and not to transient opening of the DNA. Notably, DNA
Figure 3. Mutations in the H3 N-Terminal Tail and H4K31 Cause RNA-D

(A) DRIP with the S9.6 antibody in BY4741, H3WT, H3K9-23A, H3D1-28, H4WT, a

RNase H in the GCN4 and TPD3 genes (n R 3).

(B) As in (A) in G1- or S-arrested cells in GCN4 gene (n = 3).

(C) As in (A) in the his3-based direct-repeat recombination system.

(D) Recombination frequencies in wild-type (H3WT or H4WT) and point mutation

arginine (R) with (+) or without (�) AID, using the pLZGAID plasmid (n = 3).

(E) DRIP with the S9.6 antibody in H3WT, H3K9-23A, H3K9-23Q, H3K9-23R, H4W

or not (�) in vitro with RNase H in the GCN4 gene (n = 3).

Means and SEM are plotted in all panels. *p % 0.05; **p % 0.01; ***p % 0.001 (tw
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sequencing confirmed the expected C-to-T changes and re-

vealed that these regions were similar in size, with a mean of

164 bp in the wild-type, 153 bp in hpr1D, and ranging from 125

to 172 bp in the different histone mutants (Figure 4C). The results

confirm that full R loops, composed of the RNA-DNA hybrid and

the displaced ssDNA, are formed in histone mutants as well as in

wild-type and hpr1D strains. However, the R loops in the histone

mutants selected do not differ in size from those of either wild-

type or hpr1D hyper-recombinant mutants. Therefore, differ-

ences in R loop length do not explain why some cause genome

instability, but not others.

Chromatin Plays a Key Role in Preventing R Loop
Formation
Since changes in chromatin structure could alter transcription

rates and higher mRNA production might correlate with

enhanced R loop formation (Chan et al., 2014; Wahba et al.,

2016), we measured transcript levels by northern analysis and

by RNA polymerase II (RNAPII) ChIP. The level of GCN4 mRNA

and RNAPII occupancy at eitherGCN4 or TPD3 did not vary sub-

stantially in the mutants (Figures S5A and 5A), indicating that

transcription was not significantly affected and cannot, there-

fore, explain the high levels of R loops. Alternatively, hybrids

could be favored if the mutant chromatin makes the DNA more

accessible. Indeed, truncation of the H3 N-terminal 28 residues

alters DNA-histone interactions, reducing the stability of the

nucleosome (Ferreira et al., 2007). Furthermore, the variation in

charge introduced with K31Q mutation disrupts the interaction

between K31 side chain and DNA (Iwasaki et al., 2011), which

might facilitate RNA hybridization. We therefore determined

whether nucleosome occupancy was altered. H3D1-28 and

H3K9-23A mutants significantly reduced histone H3 presence

in chromatin in the constitutive genes GCN4 and TPD3 and in

the inducible GAL1 gene and GAL1p::YLR454w construct (Fig-

ures 5B and S5B). In the H4K31Qmutant, histone H3 occupancy

tends to decrease, but this was only seen in some of the genes

analyzed (Figures 5B and S5B). The global level of histone H3

was not altered in the three histonemutants studied (Figure S5C).

Interestingly, H3 occupancy in the H3K9-23Q, H3K9-23R,

H4K31A, and H4K31R mutants that did not show R loop-depen-

dent hyper-recombination or R loop accumulation was similar to

the H3K9-23A and H4K31Qmutants, consistent with the conclu-

sion that the detectable changes in histone occupancy are not

determinant of R loop formation (Figure S5D).

Finally, given that DNA wrapping around a nucleosome intro-

duces a single negative supercoil in circular DNA molecules,

we tried to infer changes in chromatin by analyzing topoisomer

distribution in a circular plasmid. The results showed a slight
NA Hybrid Accumulation

nd H4K31Q strains in asynchronous cultures treated (+) or not (�) in vitro with

s in either H3K9, K14, K18, and K23 or H4K31 to alanine (A), glutamine (Q), or

T, H4K31A, H4K31Q, and H4K31R strains in asynchronous cultures treated (+)

o-tailed Student’s t test). See also Figure S4.
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Figure 4. The R Loop Length Is Not Different in Mutations in the H3

N-Terminal Tail, H4K31, and hpr1D

(A) Diagram of the bisulfite modification assay for detection of R loops.

(B) Detection of R loops by PCR in the different depicted regions of the GCN4

gene in H3WT, H3D1-28, and hpr1D (YDR138W) strains with the indicated

native (N) or converted (C) forward and reverse primers.
positive supercoiled shift in the H3D1-28, H3K9-23A, and

H4K31Qmutants that was clearer in the 2D gels under non-tran-

scribed conditions (Figures 5C, S6A, and S6B). The observations

suggest that the histone mutants may affect nucleosome-DNA

interaction. However, further analysis of their chromatin struc-

ture is needed to determine with precision the nature of the chro-

matin changes that make DNAmore R loop prone. This is impor-

tant for specific mutants like H3D1-28, in which a significantly

low nucleosome occupancy was apparent in some of the genes

tested, such as the GAL1::YLR454w.

Histone H3 Serine-10 Phosphorylation Is Required for
the R Loop-Mediated Genome Instability Observed in
Hyper-recombinant Mutants
We have previously shown that R loops trigger high levels of his-

tone H3S10-P in hyper-recombinant hpr1D cells, particularly in

G1, the cell-cycle phase in which H3S10-P levels are at their

lowest in wild-type cells (Castellano-Pozo et al., 2013). Since

this residue was missing in the H3D1-28 mutant, we reasoned

that an inability to undergo high levels of H3S10-P could explain

the differences in genomic instability observed. We found that

the H3K9-23A and H4K31Q mutants synchronized in G1 did

not undergo high levels of histone H3S10-P (Figure 6A). To

assess whether lack of H3S10-P was generally associated with

R loops incapable of inducing instability, we extended the anal-

ysis to other mutants selected in the screening that showed an

AID-dependent RNase H-sensitive hyper-recombination:

H3D28-31, H3E105Q, H4K5R, H4A15S, H4T82A, and H4R95A.

Interestingly, the overall levels of H3S10-P in G1 cells were low

in all these mutants and similar to wild-type levels (Figure 6B).

A closer look at the regions enriched in R loops revealed that

H3S10-P did not accumulate in either the pLZGAID system

where AID-dependent hyper-recombination was observed or in

the GCN4 and TPD3 genes where RNA-DNA hybrids were de-

tected in H3K9-23A andH4K31Qmutants (Figure 6C). Therefore,

R loops that do not cause genome instability per se do not in-

crease the levels of H3S10-P.

We next wondered whether H3S10-P was necessary for

R loop-associated instability in other mutants. If so, mutating

the N-terminal tail residues H3D1-28, H3K9-23, or H4K31 should

suppress R loop-mediated genome instability. To test this hy-

pothesis, we made double mutants of H3D1-28, H3K9-23A, or

H4K31Q with hpr1D, an R loop-dependent hyper-recombinant

mutant (Huertas and Aguilera, 2003). Effectively, in the double

mutants, the H3S10-P signal decreased to wild-type levels (Fig-

ure 6D). Consistent with a requirement of H3S10-P for R loop-

mediated instability, we found that the hyper-recombination

phenotypes of R loop-accumulating hpr1D and sen1-1 mutants

were also suppressed by the H3K9-23A, H3D1-28, or H4K31Q

mutations (Figures 7A and 7B). To confirm the suppression of

genome instability, we extended the analysis to Rad52 foci accu-

mulation, a marker of DNA damage in the cell. Precluding H3S10

phosphorylation also diminished Rad52 foci in hpr1D or sen1-1

mutants (Figures 7Cand 7D). Taken together, these observations
(C) Distribution of the R loop length in H3WT, H3K9-23A, H3D1-28, H4K31Q,

and hpr1D (YDR138W) strains detected by bisulfite modification assay in the

GCN4 gene. Mean and SEM of 18–35 clones are shown.
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C

Figure 5. Nucleosome Density Is

Decreased in H3 N-Terminal Tail Mutants

(A) ChIP analysis of RNAPII occupancy in H3WT,

H3K9-23A, H3D1-28, H4WT, and H4K31Q strains

in the GCN4 and TPD3 genes (n = 3).

(B) ChIP analysis using H3 antibody in the

constitutive GCN4 and TPD3 genes (n R 4).

Means and SEM are plotted in both panels.

*p % 0.05; **p % 0.01; ***p % 0.001 (two-tailed

Student’s t test).

(C) Plasmid pRSGALlacZ topoisomer distribution

in 2D chloroquine gels under active (ON) or

repressed (OFF) conditions. Nicked (N) and linear

(L) forms are indicated. Black arrows indicate the

DNA migration shift caused by the change in su-

percoiling.

See also Figures S5 and S6.
indicate thatR loop-mediatedgenome instability is not causedby

theR loop itself, but by subsequent and additional events altering

chromatin, such as histone H3 serine-10 phosphorylation.

DISCUSSION

AID induces recombination in yeast strains accumulating

R loops, such as hpr1D (Gómez-González and Aguilera, 2007),

and we used this property to identify a number of histone H3

and H4 mutants that increase instability in an AID-dependent

and RNase H-sensitive manner. Molecular analysis of these

mutant shows that they do indeed accumulate R loops contain-

ing RNA-DNA hybrids plus the displaced ssDNAs as shown by
604 Molecular Cell 66, 597–609, June 1, 2017
AID-induced recombination and bisulfite

mutagenesis (Figures 3 and 4). This im-

plies that not only the formation of a

properly assembled mRNP during tran-

scription (Aguilera, 2005) but also the

chromatin structure plays a key role in

preventing R loops. Importantly, in

contrast to all R loop-accumulating yeast

mutants reported until now, such as

hpr1, rnh1, sen1, npl3, sin3, and mRNA

30 end processing factors (Huertas and

Aguilera, 2003; Mischo et al., 2011; San-

tos-Pereira et al., 2013; Stirling et al.,

2012; Wahba et al., 2011), genetic insta-

bility, as determined by Rad52 foci and

hyper-recombination, is not observed in

these histonemutants unless AID is over-

expressed (Figures 1 and 2). Therefore,

we report here that R loops alone are

not sufficient to compromise genome

integrity by themselves.

The specific mutations in H3 N-termi-

nal tail and H4K31 analyzed here in-

crease R loop levels in the cell, without

enhancing transcription (Figures 5 and

S5). Importantly, only the changes of

H3K9-23 to A, but not to Q or R, and
of H4K31 to Q, but not to A or R, promote R loops (Figure 3),

implying a unique impact of H3K9-23A and H4K31Q muta-

tions on chromatin structure and dynamics to favor R loop for-

mation. Acetylation of H3 lysines 9, 14, 18, and 23 is the only

modification reported in these residues in S. cerevisiae

(Smolle and Workman, 2013). H3K9 is also methylated in other

eukaryotes, but not in the budding yeast. In histone H4, no

modification has been reported for the lysine 31 in

S. cerevisiae, but it can be methylated, acetylated, or ubiqui-

tylated in mouse and humans (Garcia et al., 2007; Kim et al.,

2013). Apart from blocking possible post-translational modifi-

cations, mutations in the lysines of the histone tails could alter

DNA-nucleosome interaction or destabilize the nucleosome
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Figure 6. Mutations in the H3 N-Terminal

Tail and H4K31 Suppress H3 Serine-10

Phosphorylation in the R Loop-Accumu-

lating hpr1D Mutant

(A) Immunoblot showing H3S10-P of cell extracts

from hpr1D (YDR138W), H3D1-28, H3K9-23, and

H4K31Qmutants arrested inG1.Signals normalized

to H3 are plotted (n = 3). Only the increased values

were subjected tostatistical analysisof significance.

(B) As in (A) in hpr1d (YDR138W), H3d1-28,

H3E105Q, H3D28-31, H4K5R, H4A15S, H4T82A,

and H4R95A mutants.

(C) ChIP analysis of H3S10-P normalized to H3 in

strains arrested in G1 (n R 3) in the lacZ gene of

the pLZGAID plasmid and in the endogenous

GCN4 and TPD3 genes.

(D) As in (C) in simple and double hpr1 and histone

mutant strains arrested in G1 in the GCN4 and

TPD3 genes (n = 4).

Means and SEM are plotted in all panels.

*p% 0.05; **p% 0.01 (Mann-Whitney test in A and

B; two-tailed Student’s t test in C and D).
(Ferreira et al., 2007; Iwasaki et al., 2011). The slightly lower

histone occupancy observed in these mutants, together with

the changes in supercoiling of DNA (Figures 5, S5, and S6),

suggests a reduction in nucleosome stability and chromatin

structure, as previously reported for H3D1-28 mutants (Ferre-

ira et al., 2007; Sperling and Grunstein, 2009). The altered

chromatin formed in these mutants would facilitate co-tran-

scriptional R loop formation. These data are in agreement

with genome-wide analyses showing that R loops are

observed in wild-type cells in regions with open chromatin

marks and increased DNA accessibility (Sanz et al., 2016).

However, a slight decrease in nucleosome occupancy is

also observed in H3K9-23R and H4K31R mutants, which do

not lead to R loops (Figure S5). This implies that a simple

reduction in histone occupancy may not be sufficient to

explain the formation of R loops, which may be related with
Mo
the co-transcriptional dynamics of

chromatin in these mutants. Further

analysis would be needed to identify

the common features that make them

R loop prone.

The new types of R loop-accumulating

histone mutants identified here uncouple

RNA-DNA hybrid formation from genome

instability. This chromatin structure, how-

ever, facilitates formation of R loops that

do not compromise genome integrity.

Importantly, the incapacity of the R loops

formed in the selected histone mutants to

triggergenomeinstability isnotdetermined

by the size of the RNA-DNA hybrids, since

they are similar in wild-type cells and in

R loop-accumulating mutants (on average

150 bp long with some being larger than

500 bp) regardless of whether they lead

to genome instability or not (Figure 4).
Therefore, a key question in R loop biology is what differentiates

R loops that compromise genome integrity (‘‘bad’’ R loops) from

those that do not (‘‘good’’ R loops).

Recent reports have shown that R loops that cause genome

instability are associated with histone H3S10-P marks and that

the chromatin reorganizing complex FACT is required to prevent

R loop-dependent transcription-replication conflicts (Castel-

lano-Pozo et al., 2013; Herrera-Moyano et al., 2014). The lack

or low level of histone H3S10-P of the H3D1-28, H3K9-23A,

H3D28-31, H3E105Q, H4K5R, H4A15S, H4T82A, H4R95A, and

H4K31Qmutants, in contrast to the R loop-dependent hyper-re-

combinant hpr1 and sen1mutants (Castellano-Pozo et al., 2013),

shows, indeed, that H3S10 phosphorylation correlates with

harmful R loops. Importantly, H3D1-28, H3K9-23A, and

H4K31Qmutations suppress the H3S10-P and R loop-mediated

instability of hpr1 and sen1 mutants, a key result supporting the
lecular Cell 66, 597–609, June 1, 2017 605
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idea that H3S10-P is necessary for R loop-mediated genome

instability. It is worth noting that the non-phosphorylatable

H3S10A and phosphomimic H3S10D mutations, previously

shown to induce genetic instability (Rad52 foci and plasmid

loss) (Castellano-Pozo et al., 2013), were not selected from our

AID-induced hyper-recombination screening (Figure 1), implying

that they do not form R loops and that the reported genetic insta-

bility phenotypes are R loop independent. Consistently, both his-

tone mutations were shown to partially suppress the hyper-re-

combinant phenotype of hpr1 (Castellano-Pozo et al., 2013).

Therefore, our results demonstrate that H3S10 phosphorylation

is a required step for R loops to induce genome instability, even

though this does not necessarily mean that H3S10-P by itself is

sufficient to cause instability.

It is possible that the ability of an R loop to trigger instability is

linked to its ability to promote, once formed, a subsequent chro-

matin-remodeling step apart from and linked to histone H3 phos-

phorylation. This modification does not occur in wild-type cells

where R loops localize to active chromatin marks (Sanz et al.,

2016) and do not induce genome instability. The reason why

H3S10 phosphorylation does not occur in theH3 andH4mutants

analyzed (H3K9-23A, H3D28-31, H3E105Q, H4K5R, H4A15S,

H4T82A, H4R95A, and H4K31Q) is out of the scope of this study,

but it is worth noting that a crosstalk between H3S10-P and

post-translational modification of K9 or K14 has been previously

reported (Rea et al., 2000) and that post-translational modifica-

tion of histone H4 residues influences H3 modification and vice

versa. H4K31 is thus associated with H3 N-terminal tail methyl-

ation and H3K4 methylation with H4 acetylation (Kim et al.,

2013; Zhang et al., 2015).

In conclusion, this study uncovers a two-step mechanism to

explain R loop-mediated genome instability (Figure 7E). In the

first step, co-transcriptional R loops are facilitated by a subop-

timal chromatin, as suggested by this study, or a defective

mRNP biogenesis, as previously reported (Huertas and Agui-

lera, 2003). In the second step, R loops would elicit modifica-

tions in the chromatin by a process that includes H3 serine-

10 phosphorylation, to cause genome instability; otherwise,

the R loops by themselves would not present a relevant threat

to genome integrity. We need to decipher what is different in

chromatin dynamics in the selected mutants to become

R loop prone and facilitate the first step of our model. However,

once formed, R loops may trigger a local chromatin condensa-

tion or compaction that would likely constitute a barrier to DNA

replication. This is consistent with previous suggestions that

chromatin condensation is a cause of chromosome fragility

(El Achkar et al., 2005), and with our previous observations
Figure 7. Suppression of hpr1D and sen1-1 Genomic Instability by the

(A) Schematic representation of the direct-repeat recombination system in the pL

mutant strains carrying the pLY plasmid (n = 3).

(B) Schematic representation of the direct-repeat L-lacZ recombination system o

and histone mutant strains carrying the L-lacZ system (n = 4).

(C) Percentage of Rad52-YFP foci formation in simple and double hpr1 and histo

(D) As in (C) in the simple and double sen1 and histone mutant strains (n = 4). M

(two-tailed Student’s t test).

(E) A two-step mechanism model of R loop-mediated genome instability. In the fi

formation. If they persist, R loops would induce a change in chromatin linked to H3

impeded in H3D1-28, H3K9-23A, and H4K31Q mutants.
that hyper-recombinogenic R loops are linked to H3S10-P in

yeast, C. elegans, and human cells (Castellano-Pozo et al.,

2013), even though this does not exclude that alternative or

additional modifications, such H3K9me2 or others, could also

contribute to R loop-mediated instability (Castellano-Pozo

et al., 2013; Groh et al., 2014; Skourti-Stathaki et al., 2014).

Our study, therefore, could give us clues about the difference

between ‘‘good’’ (possibly abundant in normal cells) and

‘‘bad’’ R loops (enhanced under pathological conditions), so

that only ‘‘bad’’ R loops would be associated with the chro-

matin modifications responsible for genome instability. Our

study thus opens new perspectives to understand the role of

RNA-DNA hybrids and epigenetic modifications in the origin

of genome instability and cancer.
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Mischo, H.E., Gómez-González, B., Grzechnik, P., Rondón, A.G., Wei, W.,

Steinmetz, L., Aguilera, A., and Proudfoot, N.J. (2011). Yeast Sen1 helicase

protects the genome from transcription-associated instability. Mol. Cell

41, 21–32.

Moriel-Carretero, M., and Aguilera, A. (2010). A postincision-deficient TFIIH

causes replication fork breakage and uncovers alternative Rad51- or Pol32-

mediated restart mechanisms. Mol. Cell 37, 690–701.

Mumberg, D., M€uller, R., and Funk, M. (1994). Regulatable promoters of

Saccharomyces cerevisiae: comparison of transcriptional activity and their

use for heterologous expression. Nucleic Acids Res. 22, 5767–5768.

Prado, F., and Aguilera, A. (1995). Role of reciprocal exchange, one-ended in-

vasion crossover and single-strand annealing on inverted and direct repeat

recombination in yeast: different requirements for the RAD1, RAD10, and

RAD52 genes. Genetics 139, 109–123.

Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M.,

Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., and Jenuwein, T. (2000).

Regulation of chromatin structure by site-specific histone H3 methyltrans-

ferases. Nature 406, 593–599.

Roca, J. (2009). Two-dimensional agarose gel electrophoresis of DNA top-

oisomers. Methods Mol. Biol. 582, 27–37.

Santos-Pereira, J.M., and Aguilera, A. (2015). R loops: new modulators of

genome dynamics and function. Nat. Rev. Genet. 16, 583–597.

Santos-Pereira, J.M., Herrero, A.B., Garcı́a-Rubio, M.L., Marı́n, A., Moreno, S.,

and Aguilera, A. (2013). The Npl3 hnRNP prevents R-loop-mediated transcrip-

tion-replication conflicts and genome instability. Genes Dev. 27, 2445–2458.

Sanz, L.A., Hartono, S.R., Lim, Y.W., Steyaert, S., Rajpurkar, A., Ginno, P.A.,

Xu, X., and Chédin, F. (2016). Prevalent, dynamic, and conserved R-loop struc-

tures associate with specific epigenomic signatures in mammals. Mol. Cell 63,

167–178.

Schmittgen, T.D., and Livak, K.J. (2008). Analyzing real-time PCR data by the

comparative C(T) method. Nat. Protoc. 3, 1101–1108.

Schwab, R.A., Nieminuszczy, J., Shah, F., Langton, J., Lopez Martinez, D.,

Liang, C.C., Cohn, M.A., Gibbons, R.J., Deans, A.J., and Niedzwiedz, W.

(2015). The Fanconi anemia pathway maintains genome stability by coordi-

nating replication and transcription. Mol. Cell 60, 351–361.

Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host

strains designed for efficient manipulation of DNA in Saccharomyces cerevi-

siae. Genetics 122, 19–27.
Skourti-Stathaki, K., Kamieniarz-Gdula, K., and Proudfoot, N.J. (2014).

R-loops induce repressive chromatin marks over mammalian gene termina-

tors. Nature 516, 436–439.

Smolle, M., and Workman, J.L. (2013). Transcription-associated histone mod-

ifications and cryptic transcription. Biochim. Biophys. Acta 1829, 84–97.

Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A., and Bhagwat, A.S. (2003).

Human activation-induced cytidine deaminase causes transcription-depen-

dent, strand-biased C to U deaminations. Nucleic Acids Res. 31, 2990–2994.

Sollier, J., Stork, C.T., Garcı́a-Rubio, M.L., Paulsen, R.D., Aguilera, A., and

Cimprich, K.A. (2014). Transcription-coupled nucleotide excision repair fac-

tors promote R-loop-induced genome instability. Mol. Cell 56, 777–785.

Sperling, A.S., and Grunstein, M. (2009). Histone H3 N-terminus regulates

higher order structure of yeast heterochromatin. Proc. Natl. Acad. Sci. USA

106, 13153–13159.

Sridhara, S.C., Carvalho, S., Grosso, A.R., Gallego-Paez, L.M., Carmo-

Fonseca, M., and de Almeida, S.F. (2017). Transcription dynamics prevent

RNA-mediated genomic instability through SRPK2-dependent DDX23 phos-

phorylation. Cell Rep. 18, 334–343.

Stirling, P.C., Chan, Y.A., Minaker, S.W., Aristizabal, M.J., Barrett, I.,

Sipahimalani, P., Kobor, M.S., and Hieter, P. (2012). R-loop-mediated genome

instability in mRNA cleavage and polyadenylation mutants. Genes Dev. 26,

163–175.

Tessarz, P., and Kouzarides, T. (2014). Histone core modifications regulating

nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708.

Wahba, L., Amon, J.D., Koshland, D., and Vuica-Ross, M. (2011). RNase H and

multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from

generating genome instability. Mol. Cell 44, 978–988.

Wahba, L., Costantino, L., Tan, F.J., Zimmer, A., and Koshland, D. (2016).

S1-DRIP-seq identifies high expression and polyA tracts asmajor contributors

to R-loop formation. Genes Dev. 30, 1327–1338.

Wellinger, R.E., Prado, F., and Aguilera, A. (2006). Replication fork progression

is impaired by transcription in hyperrecombinant yeast cells lacking a func-

tional THO complex. Mol. Cell. Biol. 26, 3327–3334.

Yang, Y., McBride, K.M., Hensley, S., Lu, Y., Chedin, F., and Bedford, M.T.

(2014). Arginine methylation facilitates the recruitment of TOP3B to chromatin

to prevent R loop accumulation. Mol. Cell 53, 484–497.

Yu, K., Chedin, F., Hsieh, C.L.,Wilson, T.E., and Lieber, M.R. (2003). R-loops at

immunoglobulin class switch regions in the chromosomes of stimulated

B cells. Nat. Immunol. 4, 442–451.

Zhang, T., Cooper, S., and Brockdorff, N. (2015). The interplay of histone mod-

ifications—writers that read. EMBO Rep. 16, 1467–1481.
Molecular Cell 66, 597–609, June 1, 2017 609

http://refhub.elsevier.com/S1097-2765(17)30353-2/sref33
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref33
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref33
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref34
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref34
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref34
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref35
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref35
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref35
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref35
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref36
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref36
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref36
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref37
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref37
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref37
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref37
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref38
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref38
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref38
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref38
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref39
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref39
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref39
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref39
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref40
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref40
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref41
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref41
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref42
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref42
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref42
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref43
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref43
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref43
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref43
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref44
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref44
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref45
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref45
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref45
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref45
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref46
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref46
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref46
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref47
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref47
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref47
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref48
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref48
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref49
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref49
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref49
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref50
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref50
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref50
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref51
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref51
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref51
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref52
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref52
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref52
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref52
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref53
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref53
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref53
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref53
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref54
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref54
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref55
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref55
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref55
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref56
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref56
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref56
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref57
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref57
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref57
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref58
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref58
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref58
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref59
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref59
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref59
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref60
http://refhub.elsevier.com/S1097-2765(17)30353-2/sref60


STAR+METHODS
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Proteinase K Roche 3115852001
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Protein Gel
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Critical Commercial Assays

QIAquick PCR purification Kit QIAGEN 28106

Wizard SV Gel and PCR Clean-Up System Promega A9282

pGEM-T Easy vector system I Promega A1360

NucleoSpin Gel and PCR Clean-up Macherey-Nagel 740609

Deposited Data

Raw images This paper http://dx.doi.org/10.17632/6pm8g66mdh.1

Experimental Models: Organisms/Strains

Non Essential Histone H3 and H4 Mutant

Collection-Yeast

Dharmacon YSC5106

A full for a yeast strains is presented in

Table S1.

N/A N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

A full list of DNA oligos is presented in

Table S2.

N/A N/A

Software and Algorithms

7500 Software V2.0.6. Life Technologies N/A

Multi Gauge V3.0 Fujifilm N/A

Image Studio V2.1.10 LI-COR N/A

Prism V6.01 GraphPad N/A

CellQuest Pro Becton Dickinson N/A

ImageJ NIH Image N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andrés

Aguilera (aguilo@us.es).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains and media
Yeast strains used in this study are the Non Essential Histone H3 & H4Mutant Collection fromOpen Biosystems (Dai et al., 2008) and

those listed in the Table S1.

Media used in this study: YPAD (1% yeast extract, 2% peptone, 2% glucose, 20 mg/mL adenine), SD (0.17% yeast nitrogen base

without amino acids and ammonium sulfate, 0.5% ammonium sulfate, 2% glucose), SC (SD supplemented with amino acids), SGal

(identical to SC but containing 2% galactose instead of glucose), SRaff (identical to SC but containing 2% raffinose instead of

glucose), SG/L (identical to SC but containing 3% glycerol and 2% sodium lactate instead of glucose) and SPO (1% potassium

acid, 0.1% yeast extract, 0.005% glucose). Solid mediums were prepared adding 2% agar before autoclaving.

Yeast strains were freshly defrosted from stocks and grown at 30�C, except for sen1-1 strains that was grown at 26�C, using stan-

dard practices.

METHOD DETAILS

Yeast strains
The screening and most of experiments were performed with strains form the Non Essential Histone H3 & H4Mutant Collection from

Open Biosystems (Dai et al., 2008). The H3WT and H4WT strains were generated with the collection of H3 and H4 histone mutants by

removing one copy of the HHF-HHT locus and inserting the reported URA3 gene near the remaining HHT locus in the H3WT and the

HHF locus in the WTH4. Experiments with synchronized cells and the topoisomer distribution analysis were performed in bar1D var-

iants (denoted name-B). ChIP and DRIP experiments in the GAL1::YLR454w reporter were performed in cells with this construct

integrated as previously described (Mason and Struhl, 2005) (denoted name-W). Experiments with the recombination system inte-

grated (Aguilera and Klein, 1988) were performed in cells with this construct (denoted YHT). Experiments with double hpr1 or sen1

and histone mutants were performed with strains derived from crossing AWI2C or SEN1-R with the collection strains (denoted YHPK

and YSNS respectively). LOH at the MAT locus was performed with the diploid strains denoted YDI.

Plasmid
The pLZGAID plasmid was generated by cloning the PvuII fragment from p414GALAID (Gómez-González and Aguilera, 2007) con-

taining theGAL1p::AID fusion intoNaeI digested pSCh204 plasmid that contains the L-lacZ recombination system (Chávez and Agui-

lera, 1997). This plasmid allows controlled expression of human Activation-Induced Cytidine Deaminase (AID) that deaminates

cytidines in the displaced ssDNA strand of R-loops. The L-lacZ direct-repeat recombination system is based on two truncated copies

of the LEU2 gene flanking the lacZ gene. Recombination reconstitutes thewild-type LEU2 gene. The pRS317GAL:RNH1 plasmidwas

generated by cloning the SalI-SpeI fragment from pRS315GAL:RNH1 (Huertas and Aguilera, 2003), containing the GAL1p:RNH1

fusion, into SalI-SpeI digested pRS317. The pRS414GALAID-FLAG was generated by in vivo-cloning transforming a wild-type yeast

strain with the p414GALAID plasmid (Gómez-González and Aguilera, 2007) and the PCR product obtained with the primers AID-Flag

(Table S2) and the pU6H10F plasmid (De Antoni and Gallwitz, 2000). The following plasmids were used: to measure recombination

pLY (Prado and Aguilera, 1995) and pSCh204 (Chávez and Aguilera, 1997); plasmid loss pRS414 (Sikorski and Hieter, 1989); Rad52
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foci pWJ1344 (Alvaro et al., 2007). To overexpress AID we used p414GALAID and pRS413GALAID (Gómez-González and Aguilera,

2007) and pRS414GAL and pRS413GAL (Mumberg et al., 1994) as no-expression controls. For DNA topoisomer distribution analysis

we used pGAL::lacZ (Mumberg et al., 1994).

Large scale yeast transformation
The Non Essential Histone H3 & H4 Mutant Collection was transformed using the lithium acetate method (Gietz et al., 1995), but

adapted to 96-well plates. Cells were inoculated in 200 ml 2x YPAD in a flat-bottom 96-well plate using a 96-pin replicator and grown

for 2 days at 30�C shaking. Cells were diluted into fresh 2x YPADmedia in a round-bottom 96-well plate and incubated 3-4 hr at 30�C
shaking. Plates were centrifuged 5 min at 2000 rpm and washed with 150 ml 0.1 M LiAc/10 mM TE. Cells were resuspended in 100 ml

prewarmed transformation mix (500 ng plasmid DNA, 90 ml 50% PEG, 100 mM LiAc, 1x TE, 2 ml salmon sperm DNA 6 mg/ml), incu-

bated 30 min at 30�C and 20 min at 43�C. Cells were washed with sterile water and resuspended in 150 ml SC-trp medium. After

2 days at 30�C, 7 ml culture was transferred from the plate into a solid selective media.

Recombination
For recombination assays, cells were grown in SC or SGAL medium plates for 3 to 4 days. Leu+ recombinants of the L-lacZ or LY

systems were selected on SC-leu-trp or SC-leu-his plates, respectively. His+ recombinants of the chromosomal system were

selected on SC-his-lys-leu plates. Recombination frequencies were calculated as the median value of six independent colonies.

The average value of three independent transformants was plotted.

Analyses of Rad52 foci
Mid-log cultures of independent transformants carrying pRS315GAL:AID (Leu), pRS317GAL:RNH1 (Lys) or pRS317 (Lys), and

pWJ1344 (Trp) containing the RAD52-YPF fusion (Alvaro et al., 2007), were fixed with 2.5% formaldehyde and visualized at the fluo-

rescence microscope (NIKON Eclipse NI-E). Spontaneous Rad52-YFP foci were counted from nuclei of S-G2 cells. The average

value of three experiments performed with independent transformants was plotted. More than 200 cells were analyzed in each

experiment.

Loss of heterozygosity at the MAT locus
In order to study loss of heterozygosity (LOH) at the endogenous MAT locus on chromosome III, we tested the ability of homozygous

diploid wild-type and mutant strains to mate with either aMATa or aMATamating tester. Mating products were detected by auxot-

rophy complementation (growth in SD media). Diploid cells (heterozygous at MAT) cannot mate due to codominant suppression of

haploid-specific cell differentiation pathways. However loss of either MATa or MATa allele results in the ability to mate with either

MATa or MATa, respectively. Diploid colonies were mated with either F4 or F15 (MATa and MATa, respectively) mating testers in

YPAD for 5 hr and replica-plated to SD plates. The total mated products (with either F4 or F15) were scored by growth on SD.

The LOH frequency values (mated products per total cells) are the median of between 4 to 10 independent colonies per strain.

Loss of heterozygosity in this assay might be due to chromosome loss or gene conversion. Chromosome loss was determined in a

total of 59 colonies by calculating the ratio of the DNA at the PRD1 gene (located at the same chromosome as the MAT locus, chro-

mosome III) versus the DNA at the GCN4 gene (chromosome V). DNA was quantified by quantitative PCR using the comparative Ct

method (Schmittgen and Livak, 2008). A ratio below one indicated that chromosome III was lost. A third PCR reaction at the TRP1

gene, which is in heterozygosis in these diploids, was used as a reference of a gene with only one copy, since the diploid cells were

TRP1+/trp1D63.

Plasmid loss
Colonies of independent transformants carrying the pRS317GAL:RNH1 (Lys) or pRS317 (Lys), pRS315GAL:AID (Leu) and pRS414

(Trp) plasmids were grown in SC-lys-leu or SGAL-lys-leumedium and after 3.5 hr, several dilutions were plated in SC-lys-leu (to score

for total cells) and SC-lys-leu-trp (to score for cells which have lost the pRS414 plasmid). Plasmid loss frequencies were calculated as

the median value of six independent colonies. The average of three independent transformants is plotted.

Mutation assays
Cells carrying the p414GALAID plasmid were grown in SC-trp or SGAL-trp medium plates for 3 or 5 days. Colonies of independent

transformants were grown overnight in SC-trp or SGAL-trp medium, diluted and plated in SC-trp with or without 3 mg/L cyclohex-

imide. The mean value of six independent colonies from three independent transformants was represented.

Genotoxic damage sensitivity assay
Mid-log cultures were grown in SCmedium. 10-fold dilutions of the culture prepared in sterile water were plated on solid SCmedium

containing the drugs at the concentrations indicated. UV irradiation was performed in the dried plates. Plates were incubated during

2-6 days (in the dark for UV-irradiated plates).
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Transcription induction and cell cycle synchronization
ForGAL1 promoter induction, cells were grown in SG/L medium. Half of the inocule was transferred to 2% galactose-containing me-

dium and the other half to 2% glucose-containing media and grown for 1 hr (no transcription control).

For cell cycle synchronization, overnight cultures were diluted to an OD600nm 0.2 and grown until mid-log phase at 30�C in rich

(YPAD) or synthetic medium. Cells were synchronized in G1 adding 0.125 mg/ml of a-factor for bar1D mutants and 3 mg/ml for

BAR1 cells. After 2.5 hr, cells were released fromG1 in the presence or not of 20 mMHU. Samples were taken at the indicated times.

FACS
For FACS analysis, 1 mL of the culture was centrifuged, washed with 1 mL 1x PBS, resuspended in 1 mL 70% ethanol and stored at

4�C. Before the analysis, cells were washed with 1 mL 1x PBS, resuspended in 100 ml RNase A 1 mg/ml in 1x PBS and incubated

overnight at 37�C. Next day they cells were washed again with 1x PBS and resuspended in 1 mL of 5 mg/mL Propidium Iodide in

1x PBS, incubated in the dark for 30 min, sonicated 5 s at 10% amplitude and scored in a FACScalibur (Becton Dickinson, CA).

DRIP assays
Cultures were collected, washed with chilled water, resuspended in 1.4 mL spheroplasting buffer (1 M sorbitol, 10 mM EDTA pH 8,

0.1% b-mercaptoethanol, 2 mg/ml Zymoliase 20T) and incubated at 30�C for 30 min. The spheroplasts were pelleted (5 min at

4000 rpm) rinsed with water and homogeneously resuspended in 1.65 mL of buffer G2 (800 mM Guanidine HCl, 30 mM Tris-Cl

pH 8, 30 mM EDTA pH 8, 5% Tween-20, 0.5% Triton X-100). Samples were treated with 10 ml 10 mg/ml RNase A for 30 min at

37�C and 75 ml of 20 mg/ml proteinase K (Roche) for 1 hr at 50�C.
DRIPwasperformedmainlyasdescribed (Ginnoetal., 2012)with fewdifferences.DNAwasextractedgentlywithchloroform:isoamyl

alcohol 24:1. PrecipitatedDNAwasspooledonaglass rod,washed twicewith70%EtOH, resuspendedgently in TEanddigestedover-

nightwith 50UofHindIII,EcoRI,BsrGI,XbaI andSspI, 2mMspermidine and2.5ml BSA10mg/ml. Half of theDNAwas treatedwith 3 mL

RNase H (New England BioLabs) overnight 37�C as RNaseH control. Both samples were incubated with 10 mL of S9.6 antibody

(1mg/ml) in 500 mL binding buffer (10mMNaPO4 pH 7.0, 140mMNaCl, 0.05%Triton X-100), overnight at 4�C. Hybrid-antibody com-

plexeswere immunoprecipitatedwith 10 mL S9.6monoclonal antibody that specifically recognize RNA-DNAhybrids coupled toDyna-

beads Protein A (Invitrogen) for 2 hr at 4�C andwashed 3 timeswith 1x binding buffer. DNAwas eluted in 100 mL elution buffer (50 mM

TrispH8.0, 10mMEDTA,0.5%SDS) treated45minwith7mLproteinaseK20mg/mlat 55�CandpurifiedwithQuiagenDNApurification

kit (QIAGEN).

Bisulfite modification assay
DNA from exponentially growing cultures of the indicated strains in YPAD was extracted by the CTAB protocol as described (Moriel-

Carretero and Aguilera, 2010). 50 mL of the cultures were collected, washed with 5 mL of chilled water and carefully resuspended in

1 mL of 1M sorbitol-10 mM EDTA pH 8, 0.1% b-mercaptoethanol, 2 mg/mL Zimoliase 20T, and then incubated at 30�C 1h under soft

agitation. The pellet (spheroplasts) was washed with 500 mL of cold water and resuspended in 400 mL of cold water. Spheroplasts

were lysed by adding 500 mL of CTAB solution (1.4MNaCl, 100mMTris-Cl pH 7.6, 25mMEDTA pH 8, 2%CTAB). RNAwas removed

by incubating them 30 min at 50�C with 400 mg of RNase A. Proteins were removed by incubating them with 800 mg of Proteinase

K overnight at 30�C under very soft agitation. After centrifugation, pellet and supernatant were treated separately. The supernatant

was extracted with 500 mL (24:1) Cloroform:Isoamyl Alcohol. DNAwas precipitated with two volumes of 50mMTris-Cl pH 7.6, 10mM

EDTA pH 8, 1% CTAB and resuspended in 250 mL 1.4 M NaCl,1 mM EDTA pH 8, 10 mM Tris-Cl pH 7.6. The original pellet was re-

suspended in 400 mL 1.4 M NaCl, 1 mM EDTA pH 8, 10 mM Tris-Cl pH 7.6 and incubated 1h at 50�C. DNA was extracted with 200 mL

(24:1) Cloroform:Isoamyl Alcohol and combined with the DNA obtained from the supernatant. The whole sample was precipitated

then with 1vol isopropanol at room temperature, washed with 70% ethanol and resuspended in 100 mL 10 mM Tris-Cl pH 8. DNA

was fragmented by digestion with NdeI, NotI and XhoI. The bisulfite modification assay was performed essentially as described

(Yu et al., 2003). Genomic DNA was diluted in 42 mL of distilled water with 17.5 mL of 20 mM hydroquinone and 460.5 mL of 2.5 M

sodium bisulfite (pH 5.2). The mixture was sealed with mineral oil in a 500 mL microcentrifuge tube and incubated for 16 hr at

37�C in the dark. Bisulfite-treated DNA was purified with the Wizard SV Gel and PCR Clean-Up System (Promega) according to

the manufacturer’s instructions. Purified bisulfite-treated DNA was desulfonated with 0.3 M NaOH at 37�C for 15 min. Desulfonated

DNAwas recovered by ethanol precipitation and resuspended in TE (pH 8.0). Bisulfite-modified DNAwas used as a template for PCR

with either a pair of native primers, or a native primer paired with a ‘converted’ primer, the sequence of which matched the conver-

sions anticipated owing to deamination of C to U in either the transcribed (TS) or nontranscribed (NTS) strand. PCR bands were pu-

rified from agarose gels with the Wizard SV Gel and PCR Clean-Up System (Promega) and cloned in pGEMT-easy. Independent

clones were sequenced. Only molecules with more than four consecutive expected C to T changes were considered to determine

the R-loop length.

Chromatin immunoprecipitation (ChIP)
ChIP was performed as described (Hecht et al., 1999) with some modifications. For cell extract preparation, pellets were resus-

pended in 500 ml of lysis buffer (50 mM HEPES-KOH pH 7.5, 150 mM NaCl, 1 mM EDTA pH 8, 1% Triton X-100, 0.1% sodium de-

oxycholate, 0.1% SDS) supplemented with protease inhibitors (1x Complete Protease Inhibitor Cocktail (Roche) and 1 mM PMSF).
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The chromatin was sonicated alternating 1min high intensity and 20 s rest pulses for 15min in Bioruptor sonication equipment. Sam-

ples were centrifuged for 15 min at 13000 rpm to eliminate cell debris. 30 ml of supernatant were processed as Input and 300 ml were

immunoprecipitated.

The immunoprecipitation was performed overnight at 4�C using Dynabeads Protein A (Invitrogen) previously incubated with the

antibody for 4 hr rotating at 4�C. Beads were washed as described in Hecht et al. (1999) and chromatin was eluted in 250 ml elution

buffer (50 mM Tris-HCl pH 7.4, 10 mM EDTA, 1% SDS) at 65�C for 10 min., treated with 6 ml of 50 mg/ml pronase for 1 hr at 42�C and

decrosslinked for 5 hr at 65�C.Quiagen DNA purification kit was used to clean DNA. Real-time quantitative PCRwas performed using

iTaq universal SYBR Green (Biorad) with a 7500 Real-Time PCR machine (Applied Biosystems).

Electrophoresis of DNA topoisomers
For one-dimensional electrophoresis, DNA was isolated as described (González-Barrera et al., 2002) with few differences. DNA was

extracted gently 3 times with phenol:chloroform:isoamyl alcohol 25:24:1, once with chloroform:isoamyl alcohol 24:1 and it was

precipitated with isopropanol. DNA was treated with 0.5 ml 10 mg/ml RNase A and incubated for 30 min at 37�C. Finally, DNA
was cleaned with chloroform:isoamyl alcohol 24:1, precipitated with isopropanol, washed with 70% ethanol and resuspended in

TE. Electrophoresis was carried out in a 0.7% agarose gel with 4 mg/ml chloroquine at room temperature. 30 mg of DNA was loaded

in each lane and run in TPE buffer (50 mM Tris-phosphate pH 7.2, 1 mM EDTA, 25 mM phosphoric acid) with 4 mg/ml chloroquine at

40 V for 48 hr. DNA was blot-transferred to a Hybond–XL nitrocellulose membranes (GE Healthcare), which were hybridized with

P32-labeled DNA probes.

For two-dimensional electrophoresis, DNAwas isolated as described previously (Roca, 2009). For each sample, 40 mg of DNAwas

loaded in a 0.6% agarose gel TBE buffer with 1 mg/ml chloroquine. The first dimension was run at 45 V for 22 hr at RT (top to bottom).

After the first dimension, the gel was soaked in the second dimension electrophoresis buffer containing 5 mg/ml chloroquine for 1 hr

and run at 40 V for 14 hr (left to right). DNA was transferred and hybridized as described for 1D gels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Two-tailed Student’s t test was performed in all the experiments, with the exception of Figures 6A and 6B, in which Mann-Whitney

test was used. The number of experiments (n) and p values are indicated in corresponding figure legend.

DATA AND SOFTWARE AVAILABILITY

The raw images have been deposited in Mendeley Data and are available at http://dx.doi.org/10.17632/6pm8g66mdh.1.
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