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Abstract. In this contribution we describe the first results obtained for the investigation of
the elastic scattering process in the reactions induced by the Radioactive Ion Beams "Be and
8B on a 2°®Pb target at Coulomb barrier energies. The experimental data were analyzed within
the framework of the optical model in order to extract the total reaction cross section. The
comparison with data available in literature for reactions induced on 2°®Pb by light ions in the
mass range A = 6-8 shows that the loosely-bound ®B has the largest reactivity.

1. Introduction
The study of the reaction dynamics induced by light weakly-bound projectiles in the energy range
around the Coulomb barrier has attracted the interest of the Nuclear Physics community since
the early Nineties and the investigation was later boosted by growing availability of Radioactive
Ion Beams (RIBs). Several review papers have been written on this topic in the past years
[1,2,3,4,5,6, 7.

These studies were originally aimed at measuring the sub-barrier fusion process. In fact, even
in reactions induced by stable projectiles, a relevant enhancement of the fusion probability was
observed at energies below the Coulomb barrier [8]. A detailed analysis showed that both static
features, such as the nuclear deformation, and dynamical properties, such as the presence of
transfer channels with positive Quque, could dramatically alter the fusion cross section. With
the advent of RIBs, it was expected that these effects could even be magnified by the unusual
characteristics of these nuclei. In fact, especially in the lightest corner of nuclide chart we
can find several examples of exotic nuclei with strong deformations or well established cluster
configurations. Moreover, as a rather general feature, exotic projectiles are in most cases very
loosely bound, with (total) binding energies often smaller than 1 MeV. It is therefore quite
likely that, while approaching a target nucleus, a weakly bound projectile could more easily
be broken by the interaction with the Coulomb and nuclear field provided by the reaction
partner. We thus expect to observe large breakup cross sections, which should influence the
whole reaction dynamics. From a theoretical point of view, if the breakup process is considered
to be an additional open channel, we should quantum mechanically measure an enhancement
of the sub-barrier fusion cross section. On the other side, if we treat the projectile breakup as
a flux removal from the reaction input channel, then we might have a hindrance of the fusion
probability, because we would have fewer particles at disposal for all other mechanisms.

Earlier measurements indicated a rather large increase of the sub-barrier fusion cross section
[9], however it was soon realized that breakup related effects mostly enhanced the reaction rather
than the fusion probability. This enhancement was mainly due to the 2n-stripping process, as
for instance in %He- [10, 11, 12] and ®He-induced [13, 14] reactions, whereas there are strong
signatures that the breakup process could be responsible for the enhancement in reactions
induced by the neutron-halo projectiles 'Li [15, 16] and 'Be [18, 17]. In all cases, serious
deviations from the usual Rutherford scattering differential cross section were observed even at
deep sub-barrier energies and this is another important evidence of strong reaction couplings.

Within this framework, we started the investigation of "Be- and ®B-induced reactions. 8B is
an extremely weakly-bound proton-halo nucleus (S, = 0.1375 MeV), while "Be is the core of *B
and is a loosely-bound nucleus (S, 1.586 MeV) as well. As a difference with most of the RIBs
studied so far, these two nuclei are located on proton rich side of the valley of -stability and
they might exhibit different features with respect to neutron halo and neutron skin nuclei. Until
now, only the interaction of "Be and 8B with light (?8Si [19, 20, 21]) and medium-mass (*®Ni
[22, 23, 24]) has been investigated. Our study represents the first measurement performed at
Coulomb barrier energies on the heavy target 2°*Pb.
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2. Experiments

The "Be RIB for this experiment was produced by using the EXOTIC facility [25, 26, 27]
located at the Laboratori Nazionali di Legnaro (LNL) of the Istituto Nazionale di Fisica (INFN)
in Legnaro, close to Padova (Italy). The experiment with the ®B was performed in Japan by
means of the CNS Radioactive Ion Beam facility (CRIB) [28, 29] of the Center for Nuclear
Studies (CNS) of The University of Tokyo and located inside the RIKEN campus in Wako-shi.
In the next paragraphs we summarize the most important details concerning the RIB production
and the experimental set-up employed for the two experiments.

2.1. "Be Experiment

2.1.1. Beam Production The "Be delivered by the facility EXOTIC was produced employing
the two-body reaction p("Li,”Be)n, where a 48.8 MeV "Li primary beam, accelerated by the
LNL-XTU Tandem, was impinging on a gas target filled with 1 bar of hydrogen. The outcoming
RIB was separated from the scattered beam and from the other contaminants up to a degree of
purity of about 99% by using the eight ion optical elements of the facility. Details on the RIB
production at EXOTIC can be found in the most recent publications [30, 31]. The secondary
beam was impinging on a 1 mg/cm? thick 2°Pb target foil with an intensity of 2-3 x 10° pps.
Three beam energies were obtained by operating the target station in different conditions (liquid
nitrogen or room temperature) and inserting a aluminum degrader at a suitable position along
the beam line. The beam energies at mid-target positions were: 37.4, 40.5 and 42.2 MeV.

2.1.2. FExperimental Set-up Charge reaction products were detected with 6 modules of the
detector array EXPADES [32, 33]. Each module consisted of a AE-E,.s telescope of Double
Sided Silicon Strip Detectors (DSSSDs). The thickness of the telescope inner (AE) and outer
(Eyes) stage was 43-57 and 300um, respectively. The active area of each DSSSD was 64 mm x 64
mm and was divided into 32 strips per side, thus allowing a 2 mm x 2 mm pixel resolution. The
telescopes were place symmetrically around the beam axis at the following mean polar angles:
O1ap = £69°,£111° and £153° in order to cover approximately the angular 6;,, = [50°, 170°].

2.2. 8 Be Erperiment

2.2.1. Beam Production The 8B RIB for the experiment performed in Japan was produced
by employing the inverse kinematics reaction 3He(Li,®B)n, where the SLi primary beam was
delivered with an energy of 11 MeV /u by the RIKEN AVF Cyclotron and was hitting an 8-cm
long gas cell inflated with 3He gas kept at liquid nitrogen temperature and at a pressure of about
1 bar. After the selection with the CRIB separator, the 8B beam was hitting a 2.2 mg/cm? thick
208Ph target with an intensity of 10 pps and a purity of about 20%. The secondary beam energy
on target was about 50 MeV.

2.2.2. Ezperimental Set-up Also in this case, we employed six modules of the detector array
EXPADES. However, in order to ensure a wider polar angle coverage, a slightly asymmetric
arrangement was used. The mean polar angles of the six telescopes, in fact, were: 6, =
+27°,4£69°, £111° and —153°, where the positive and negative signs preceding the polar angles
indicate the left and right hemisphere (in a downstream view) of the scattering chamber. In
such a way, it was possible to cover the angular range: 6;,, = 15°-165°.

3. Preliminary Results

3.1. Elastic Scattering

Figures 1 and 2 show the preliminary evaluation of the elastic scattering angular distributions for
the two reactions. Due to the secondary beam energy resolution and to the target thickness, it
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Figure 1. (Quasi-)elastic differential cross sections for the reaction "Be + 2%*Pb at 37.4, 40.5
and 42.2 MeV. Continuous lines are optical model best-fits of the experimental data.
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Figure 2. Elastic scattering differential cross section for the reaction B + 2%®Pb at 50 MeV.
The continuous line is the result of the optical model best-fit analysis of the experimental data.
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was not possible to solve experimentally pure elastic scattering events from inelastic excitations
leading to the "Be first excited state at E, = 0.429 MeV. For this reason, the experimental
data displayed in Figure 1 have to be considered as quasi-elastic. To compensate the limited
statistics gathered, the elastic scattering data were grouped into bins of four adjacent vertical
strips and only four points per detector are represented in Figures 1 and 2. Where available,
the average of the differential cross sections evaluated by telescopes located in the left and in
the right hemisphere of the scattering chamber was considered.

The effects of the nuclear interaction between the projectiles and the target are clearly visible
in both figures. The differential cross sections decrease as the scattering angles increases, since
obviously the distance of closest approach decreases, and as the beam energy increases, as new
reaction channels open up. The experimental data were fitted within the framework of the
optical model in order to extract the total reaction cross section. The starting point of the
fitting procedure was the Broglia-Winther parametrization [34] of the nuclear potential. The
radius and diffuseness of both the real part and the imaginary part of the potential well were
kept fixed and only the depths were let free to vary. The coupled channel code FRESCO [35] was
employed for these calculations. Continuous lines in Figures 1 and 2 are the present results of
the fitting procedure.

3.2. Reaction Cross Section
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Figure 3. Preliminary evaluation of the total reaction cross sections for the systems &78Li,
"Be and 8B + 208Pb at Coulomb barrier energies. To compare systems with different Coulomb
barrier and geometrical size, energies and cross sections were normalized to the values for the
system "Be + 208Pb.

Figure 3 shows the comparison of the preliminary evaluation of the total reaction cross section
for the three beam energies we measured for the system "Be + 2%8Pb and the only energy point
collected for the reaction 8B + 298Pb. For the sake of comparison, the total reaction cross
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section data available in literature for the systems %78Li + 208Pb [36, 37] were also included in
the figure. To account for the different Coulomb barrier and the different projectile size, the
beam energies and the cross sections were normalized following the procedure described in [38]
and then multiplied by the scaling factors for the system "Be + 28Pb.

We can immediately appreciate that “Be exhibits an intermediate behavior between that for
6Li, nucleus characterized by a very similar binding energy, and that for its mirror nucleus “Li,
which has a rather similar nuclear structure but is more bound by nearly 1 MeV. At near-barrier
energies, where the projectile binding energy plays a major role, the total reaction cross section
for the system "Be + 2%®Pb resembles that for Li, whereas, as the beam energy increases,
nuclear structure effects become more relevant and the "Be reactivity approaches that for 7Li.

The comparison between the mirror nuclei 8Li and ®B is also very striking, being the reaction
cross section for the boron isotope nearly twice that for the lithium counterpart. Such a large
difference is presently interpreted as a direct consequence of the very small 8B binding energy
and a possible signature of a strong breakup channel 8B — "Be + p.

4. Perspectives

First-hand results on the reaction dynamics induced at Coulomb barrier energy by the two
RIBs "Be and ®B on a 2%Pb target have been presented. The data analysis concentrated so
far on the evaluation of the elastic scattering angular distributions in order to extract the total
reaction cross sections. A preliminary comparison for the reactions induced at Coulomb barrier
energies on a 2%®Pb target by light weakly-bound projectiles in the mass range A = 6-8 has been
presented.

The next steps of the analysis will consist in finalizing the theoretical calculations, by
investigating, for instance, the relevance of inelastic excitations in the reaction induced "Be
and in producing reliable estimates for the breakup cross section in the system 8B + 20%Pb. For
an experimental point of view, the data analysis of the angular distributions for charged reaction
products other than the projectile could provide additional insights on the reaction dynamics
induced by these very exotic projectiles.
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