52 research outputs found
Intravitreal ranibizumab as a primary or a combined treatment for severe retinopathy of prematurity
Purpose: The aim of the study was to assess the outcomes of severe retinopathy of prematurity (ROP) in zone I or posterior zone II treated with intravitreal ranibizumab (IVR) as monotherapy or combined treatment with laser photocoagulation. Methods: This is a retrospective study analyzing clinical records of the included patients. Patients were divided into two groups: group 1 included patients who received only IVR treatment; and group 2 was subdivided into group 2A – including patients with IVR as initial treatment and complementary laser photocoagulation if retinal neovascularization or plus disease did not regress, and group 2B – including patients with initial laser photocoagulation and IVR as rescue therapy. Favorable outcomes were regression of the retinal neovascularization and plus disease, meaning control of the disease. Unfavorable outcomes were progression to stages 4 and 5 of ROP. Results: Fifty-seven eyes were included in the study. Mean birth weight and gestational age were 1,281±254 g and 29.5±2.1 weeks, respectively. Group 1 comprised of 16 eyes, with favorable outcomes in 14 eyes (87.5%). Group 2 comprised of 41 eyes, with favorable outcomes in 29 eyes (70.7%), in a mean follow-up period of 12.8 months. Conclusion: IVR was effective to treat severe cases of ROP as a primary or a combined treatment. Forty-three of the 57 treated eyes (75.4%) achieved regression of ROP and favorable outcomes
Prospective, historically controlled study to evaluate the efficacy and safety of a new paediatric formulation of nifurtimox in children aged 0 to 17 years with chagas disease one year after treatment (Chico)
Nifurtimox is a recommended treatment for Chagas disease, but data from treated children are limited. We investigated the efficacy, safety and tolerability of nifurtimox administered as divisible, dispersible 30 mg and 120 mg tablets in children with Chagas disease. In this blinded, controlled study conducted January 2016–July 2018, 330 patients aged <18 years from 25 medical centres across three South American countries were randomised 2:1 to nifurtimox 10–20 mg/kg/day (aged <12 years) or 8–10 mg/kg/day (aged ≥12 years) for 60 days (n = 219), or for 30 days plus placebo for 30 days (n = 111) (ClinicalTrials.gov NCT02625974). The primary outcome was anti-Trypanosoma cruzi serological response (negative seroconversion or seroreduction ≥20% in mean optical density from baseline determined by two conventional enzyme-linked immunosorbent assays) at 12 months in the 60-day treatment group versus historical placebo controls. Nifurtimox for 60 days achieved negative seroconversion (n = 10) and seroreduction (n = 62) in 72 patients (serological response 32.9%; 95% confidence interval [CI] 26.4%, 39.3%, of all treated patients), confirming superiority relative to the upper 95% CI of 16% for controls. In patients aged <8 months, 10/12 treated for 60 days (83.3%) and 5/7 treated for 30 days (71.4%) achieved negative seroconversion. Overall serological response was lower for 30-day than for 60-day nifurtimox (between-treatment difference 14.0% [95% CI 3.7%, 24.2%]). The frequency of T. cruzi-positive quantitative polymerase chain reactions decreased substantially from baseline levels (60-day regimen 53.4% versus 1.4%; 30-day regimen 51.4% versus 4.5%). Study drug-related treatment-emergent adverse events (TEAEs), which were observed in 62 patients (28.3%) treated for 60 days and 29 patients (26.1%) treated for 30 days, were generally mild or moderate and resolved without sequelae; 4.2% of all TEAEs led to nifurti-mox discontinuation. Age-and weight-adjusted nifurtimox for 60 days achieved a serological response at 12 months post-treatment that was superior to historical placebo, was well tolerated and had a favourable safety profile in children with Chagas disease. Although, at 1 year serological follow-up, efficacy of the shorter nifurtimox treatment was not comparable to the 60-day treatment regimen for the overall study population, further long-term follow-up of the patients will provide important information about the progress of serological conversion in children treated with nifurtimox, as well as the potential efficacy difference between the two regimens over time.Fil: Altcheh, Jaime Marcelo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Gobierno de la Ciudad de Buenos Aires. Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas; ArgentinaFil: Castro, Luis. Centro de Atención E Investigación Médica; ColombiaFil: Dib, Juan C.. Universidad del Norte; ColombiaFil: Grossmann, Ulrike. No especifíca;Fil: Huang, Erya. No especifíca;Fil: Moscatelli, Guillermo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Gobierno de la Ciudad de Buenos Aires. Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas; ArgentinaFil: Pinto Rocha, Jimy José. Fundación Ceades; BoliviaFil: Ramírez, Teresa Estela. Centro de Enfermedad de Chagas y Patologias Regionales; Argentin
Reconstructing Native American population history
The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call First American. However, speakers of Eskimog-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America. © 2012 Macmillan Publishers Limited. All rights reserved.Fil: Reich, David. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados UnidosFil: Patterson, Nick. Massachusetts Institute of Technology; Estados UnidosFil: Campbell, Desmond. Colegio Universitario de Londres; Reino Unido. The University Of Hong Kong; Hong KongFil: Tandon, Arti. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados UnidosFil: Mazieres, Stéphane. Colegio Universitario de Londres; Reino UnidoFil: Ray, Nicolas. Universidad de Ginebra; SuizaFil: Parra, Maria V.. Colegio Universitario de Londres; Reino Unido. Universidad de Antioquia; ColombiaFil: Rojas, Winston. Colegio Universitario de Londres; Reino Unido. Universidad de Antioquia; ColombiaFil: Duque, Constanza. Universidad de Antioquia; Colombia. Colegio Universitario de Londres; Reino UnidoFil: Mesa, Natalia. Universidad de Antioquia; Colombia. Colegio Universitario de Londres; Reino UnidoFil: García, Luis F.. Universidad de Antioquia; ColombiaFil: Triana, Omar. Universidad de Antioquia; ColombiaFil: Blair, Silvia. Universidad de Antioquia; ColombiaFil: Maestre, Amanda. Universidad de Antioquia; ColombiaFil: Dib, Juan C.. Fundación Salud Para El Tró Pico; ColombiaFil: Bravi, Claudio Marcelo. Colegio Universitario de Londres; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Bailliet, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Corach, Daniel. Universidad de Buenos Aires; ArgentinaFil: Hünemeier, Tábita. Colegio Universitario de Londres; Reino Unido. Universidade Federal do Rio Grande do Sul; BrasilFil: Bortolini, Maria Cátira. Universidade Federal do Rio Grande do Sul; BrasilFil: Salzano, Francisco M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Petzl Erler, María Luiza. Universidade Federal do Paraná; BrasilFil: Acuña Alonzo, Victor. National Institute Of Anthropology And History; MéxicoFil: Aguilar Salinas, Carlos. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Canizales-Quinteros, Samuel. Universidad Nacional Autónoma de México; MéxicoFil: Tusié Luna, Teresa. Universidad Nacional Autónoma de México; MéxicoFil: Riba, Laura. Universidad Nacional Autónoma de México; MéxicoFil: Rodríguez Cruz, Maricela. Umae Hospital de Pediatría Centro Medico Nacional Siglo Xxi; MéxicoFil: Lopez Alarcón, Mardia. Umae Hospital de Pediatría Centro Medico Nacional Siglo Xxi; MéxicoFil: Coral Vazquez, Ramón. Instituto Politécnico Nacional; Méxic
Reconstructing Native American Population History
The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America
Characterizing Emerging Canine H3 Influenza Viruses.
The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned
- …