647 research outputs found

    Evolution, function and roles in drug sensitivity of trypanosome aquaglyceroporins

    Get PDF
    Aquaglyceroporins (AQPs) are membrane proteins that function in osmoregulation and the uptake of low molecular weight solutes, in particular glycerol and urea. The AQP family is highly conserved, with two major subfamilies having arisen very early in prokaryote evolution and retained by eukaryotes. A complex evolutionary history indicates multiple lineage-specific expansions, losses and not uncommonly a complete loss. Consequently, the AQP family is highly evolvable and has been associated with significant events in life on Earth. In the African trypanosomes, a role for the AQP2 paralogue, in sensitivity to two chemotherapeutic agents, pentamidine and melarsoprol, is well established, albeit with the mechanisms for cell entry and resistance unclear until very recently. Here, we discuss AQP evolution, structure and mechanisms by which AQPs impact drug sensitivity, suggesting that AQP2 stability is highly sensitive to mutation while serving as the major uptake pathway for pentamidine

    Evolving differentiation in African trypanosomes

    Get PDF
    Differentiation is a central aspect of the parasite life cycle and encompasses adaptation to both host and environment. If we accept that evolution cannot anticipate an organism’s needs as it enters a new environment, how do parasite differentiation pathways arise? The transition between vertebrate and insect stage African trypanosomes is probably one of the better studied and involves a cell-cycle arrested or ‘stumpy’ form that activates metabolic pathways advantageous to the parasite in the insect host. However, a range of stimuli and stress conditions can trigger similar changes, leading to formation of stumpy-like cellular states. We propose that the origin and optimisation of this differentiation program represents repurposing of a generic stress response to gain considerable gain-of-fitness associated with parasite transmission

    Enabling CUDA acceleration within virtual machines using rCUDA

    Get PDF
    The hardware and software advances of Graphics Processing Units (GPUs) have favored the development of GPGPU (General-Purpose Computation on GPUs) and its adoption in many scientific, engineering, and industrial areas. Thus, GPUs are increasingly being introduced in high-performance computing systems as well as in datacenters. On the other hand, virtualization technologies are also receiving rising interest in these domains, because of their many benefits on acquisition and maintenance savings. There are currently several works on GPU virtualization. However, there is no standard solution allowing access to GPGPU capabilities from virtual machine environments like, e.g., VMware, Xen, VirtualBox, or KVM. Such lack of a standard solution is delaying the integration of GPGPU into these domains. In this paper, we propose a first step towards a general and open source approach for using GPGPU features within VMs. In particular, we describe the use of rCUDA, a GPGPU (General-Purpose Computation on GPUs) virtualization framework, to permit the execution of GPU-accelerated applications within virtual machines (VMs), thus enabling GPGPU capabilities on any virtualized environment. Our experiments with rCUDA in the context of KVM and VirtualBox on a system equipped with two NVIDIA GeForce 9800 GX2 cards illustrate the overhead introduced by the rCUDA middleware and prove the feasibility and scalability of this general virtualizing solution. Experimental results show that the overhead is proportional to the dataset size, while the scalability is similar to that of the native environment.Peer ReviewedPostprint (author's final draft

    Capillary electrophoresis as a tool for genotyping SH3 mediated coffee leaf rust resistance

    Get PDF
    Coffee is an important agricultural commodity in the world. However, it is susceptible to Hemileia vastatrix (Hv), an obligatory biotrophic fungus that causes coffee leaf rust (CLR). Natural resistance to rust has been identified in the wild species Coffea canephora and Coffea liberica. These species have been used in breeding programs where interspecific resistant hybrids have been generated. The SH3 gene, derived from C. liberica, has been shown to confer extreme and long-lasting resistance to Hv. A total of 167 accessions of the INIA’s Coffee Germplasm Collection of Peru (INIA-CGC) were screened with 4 markers linked to the SH3 gene. As positive controls, EA67 (C. liberica) and the hybrid S.288 (C. arabica x C. liberica) were used. Separation of PCR products was done by capillary electrophoresis, which allow to discriminate the alleles of each marker. For three markers, specific alleles for either C. arabica or C. liberica species were found. In all cases, S.288 exhibited specific alleles for both species; whereas the INIA-CGC accessions had exclusively C. arabica alleles and EA67 had C. liberica alleles. The BA-48-21O-f marker did not produce PCR fragments for any of the positive controls, suggesting that this marker is not as predictive as the other three to determine the presence of SH3. This work reports the existence of multiple alleles for the Sat244 marker; however, the collection does not have the SH3 mediated-resistance gene. Finally, the utility of capillary electrophoresis as a tool to identify alleles linked to SH3 was demonstrated

    Modelación computacional y simulación: aplicación en una cadena de valor agroindustrial en la provincia de Salta

    Get PDF
    Los grandes cambios introducidos en las diferentes etapas de la Globalización han generado diferentes tipos de modificaciones en los sistemas agroindustriales a nivel internacional. La influencia de los contextos políticos, económicos y sociales han afectado en gran medida las dinámicas de las Cadenas de Valor agroindustriales. La situación problemática se sintetiza en la falta de una metodología de análisis que permita estudiar las Cadenas de valor agroindustriales en la provincia de Salta. La dinámica de su comportamiento se realiza a través del programa Simul 8, el cual permite representar el comportamiento de una Cadena de Valor agroindustrial de la provincia de Salta. Posteriormente, se realiza un análisis de sensibilidad sobre algunas variables que intervienen en el comportamiento de la Cadena. La verificación se realiza a partir de los resultados obtenidos en las corridas de simulación, en tanto que la validación se realiza a través de datos suministrados por el INTA. Finalmente, se analizan los resultados obtenidos, se proponen mejoras y la incorporación de nuevas líneas de estudios que beneficien a la competitividad de las Cadenas de Valor agroindustriales de la provincia de Salta.Sociedad Argentina de Informática e Investigación Operativ
    • …
    corecore