140 research outputs found

    On the Applicability of Temperature and Precipitation Data from CMIP3 for China

    Get PDF
    Global Circulation Models (GCMs) contributed to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) and are widely used in global change research. This paper assesses the performance of the AR4 GCMs in simulating precipitation and temperature in China from 1960 to 1999 by comparison with observed data, using system bias (B), root-mean-square error (RMSE), Pearson correlation coefficient (R) and Nash-Sutcliffe model efficiency (E) metrics. Probability density functions (PDFs) are also fitted to the outputs of each model. It is shown that the performance of each GCM varies to different degrees across China. Based on the skill score derived from the four metrics, it is suggested that GCM 15 (ipsl_cm4) and GCM 3 (cccma_cgcm_t63) provide the best representations of temperature and precipitation, respectively, in terms of spatial distribution and trend over 10 years. The results also indicate that users should apply carefully the results of annual precipitation and annual temperature generated by AR4 GCMs in China due to poor performance. At a finer scale, the four metrics are also used to obtain best fit scores for ten river basins covering mainland China. Further research is proposed to improve the simulation accuracy of the AR4 GCMs regarding China

    On the Origin of the Air between Multiple Tropopauses at Midlatitudes

    Get PDF
    Multiple tropopauses are structures that regularly recur in the midlatitudes. Recent studies have relied on the notion of the excursion of tropical air from the upper troposphere into higher latitudes, thereby overlaying the tropopause of the midlatitudes. We herein analyse the origin and characteristics of the air at the Boulder radiosonde station, between the first and second tropopauses combining an analysis of radiosonde data with a Lagrangian approach based on the FlexPart model and ERA-40 analysis data. Our results show that the air between both tropopauses has its origin in midlatitudes

    Enabling BOINC in infrastructure as a service cloud system

    Get PDF
    Volunteer or crowd computing is becoming increasingly popular for solving complex research problems from an increasingly diverse range of areas. The majority of these have been built using the Berkeley Open Infrastructure for Network Computing (BOINC) platform, which provides a range of different services to manage all computation aspects of a project. The BOINC system is ideal in those cases where not only does the research community involved need low-cost access to massive computing resources but also where there is a significant public interest in the research being done. We discuss the way in which cloud services can help BOINC-based projects to deliver results in a fast, on demand manner. This is difficult to achieve using volunteers, and at the same time, using scalable cloud resources for short on demand projects can optimize the use of the available resources. We show how this design can be used as an efficient distributed computing platform within the cloud, and outline new approaches that could open up new possibilities in this field, using Climateprediction.net (http://www.climateprediction.net/) as a case studyS

    Cloud Computing for Climate Modelling: Evaluation, Challenges and Benefits

    Get PDF
    Cloud computing is a mature technology that has already shown benefits for a wide range of academic research domains that, in turn, utilize a wide range of application design models. In this paper, we discuss the use of cloud computing as a tool to improve the range of resources available for climate science, presenting the evaluation of two different climate models. Each was customized in a different way to run in public cloud computing environments (hereafter cloud computing) provided by three different public vendors: Amazon, Google and Microsoft. The adaptations and procedures necessary to run the models in these environments are described. The computational performance and cost of each model within this new type of environment are discussed, and an assessment is given in qualitative terms. Finally, we discuss how cloud computing can be used for geoscientific modelling, including issues related to the allocation of resources by funding bodies. We also discuss problems related to computing security, reliability and scientific reproducibilityS

    Analysis of the Gálvez–Davison Index for the forecasting formation and evolution of convective clouds in the tropics: Western Cuba

    Get PDF
    The Gálvez–Davison Index (GDI) is an atmospheric stability index recently developed to improve the prediction of thunderstorms and shallower types of moist convection in the tropics. Because of its novelty, its use for tropical regions remains largely unexplored. Cuba is a region that suffers extreme weather events, such as tropical storms and hurricanes, some of them worsened by climate change. This research analyzes the effectiveness of the GDI in detecting the potential for convective cloud development, using forecast data from the Weather Research and Forecasting (WRF) model for Western Cuba. To accomplish this, here, we evaluated the performance of the GDI in ten study cases from the dry and wet seasons. As part of our study, we researched how GDI correlates with brightness temperatures (BTs) measured using GOES-16. In addition, the GDI results with the WRF model are compared with results using the Global Forecast System (GFS). Our results show a high correlation between the GDI and BT, concluding that the GDI is a robust tool for forecasting both synoptic and mesoscale convective phenomena over the region studied. In addition, the GDI is able to adequately forecast stability conditions. Finally, the GDI values computed from the WRF model perform much better than those from the GFS, probably because of the greater horizontal resolution in the WRF model.Xunta de Galicia | Ref. ED431C 2021/44Xunta de Galicia | Ref. ED481A-2020/19

    Photovoltaic power resource at the Atacama Desert under climate change

    Get PDF
    The Atacama desert is a region with exceptional conditions for solar power production. However, despite its relevance, the impact of climate change on this resource in this region has barely been studied. Here, we use regional climate models to explore how climate change will affect the photovoltaic solar power resource per square meter ( ) in Atacama. Models project average reductions in of 1.5% and 1.7% under an RCP8.5 scenario, respectively, for 2021-2040 and 2041-2060. Under RCP2.6 and the same periods, reductions range between 1.2% and 0.5%. Also, we study the contribution to future changes in of the downwelling shortwave radiation, air temperature and wind velocity. We find that the contribution from changes in wind velocity is negligible. Future changes of downwelling shortwave radiation, under the RCP8.5 scenario, cause up to 87% of the decrease of for 2021-2040 and 84% for 2041-2060. Rising temperatures due to climate change are responsible for drops in ranging between 13%–19% under RCP2.6 and 14%–16% under RCP8.5.Xunta de Galicia | Ref. ED431C 2021/44Universidad de Vigo/CISUGMinisterio de Ciencia e Innovación | Ref. IJC2020-043745-IMinisterio de Universidade

    Extratropical age of air trends and causative factors in climate projection simulations

    Get PDF
    Climate model simulations show an acceleration of the Brewer–Dobson circulation (BDC) in response to climate change. While the general mechanisms for the BDC strengthening are widely understood, there are still open questions concerning the influence of the details of the wave driving. Mean age of stratospheric air (AoA) is a useful transport diagnostic for assessing changes in the BDC. Analyzing AoA from a subset of Chemistry–Climate Model Initiative part 1 climate projection simulations, we find a remarkable agreement between most of the models in simulating the largest negative AoA trends in the extratropical lower to middle stratosphere of both hemispheres (approximately between 20 and 25 geopotential kilometers (gpkm) and 20–50∘ N and S). We show that the occurrence of AoA trend minima in those regions is directly related to the climatological AoA distribution, which is sensitive to an upward shift of the circulation in response to climate change. Also other factors like a reduction of aging by mixing (AbM) and residual circulation transit times (RCTTs) contribute to the AoA distribution changes by widening the AoA isolines. Furthermore, we analyze the time evolution of AbM and RCTT trends in the extratropics and examine the connection to possible drivers focusing on local residual circulation strength, net tropical upwelling and wave driving. However, after the correction for a vertical shift of pressure levels, we find only seasonally significant trends of residual circulation strength and zonal mean wave forcing (resolved and unresolved) without a clear relation between the trends of the analyzed quantities. This indicates that additional causative factors may influence the AoA, RCTT and AbM trends. In this study, we postulate that the shrinkage of the stratosphere has the potential to influence the RCTT and AbM trends and thereby cause additional AoA changes over time.Czech Science Foundation (GACˇ R) | Ref. 16- 01562JCzech Science Foundation (GACˇ R) | Ref. 18-01625SMinisterio de Ciencia e Innovación | Ref. CGL2015-71575-PXunta de Galicia | Ref. ED481B 2018/103Ministerio de Economía y Competitividad | Ref. RYC-2013-1456

    Advancing climate services for the European renewable energy sector through capacity building and user engagement

    Get PDF
    The development of successful climate services faces a number of challenges, including the identification of the target audience and their needs and requirements, and the effective communication of complex climate information, through engagement with a range of stakeholders. This paper describes how these challenges were tackled during the European Climatic Energy Mixes (ECEM) project, part of the Copernicus Climate Change Service (C3S), in order to deliver a pre-operational, proof-of-concept climate service for the European renewable energy sector. The process of iterative user engagement adopted in ECEM is described, from the initial presentation of the team's first vision for such a service to support external stakeholders, through to evaluation of the final interactive tool for visualisation, data download and supporting documentation (the C3S ECEM Demonstrator). The outcomes of this evaluation are outlined, together with a retrospective reflection on the engagement and development process. The extent to which co-production and co-design were achieved in practice is assessed. The paper also highlights the distance travelled from the start to end of ECEM in terms of building capacity, developing a community of practice, and raising the Technology Readiness Level. The relevance of ECEM for the European climate services market is briefly considered, including the development of downstream commercial services which build upon the public C3S services.European Commission | Ref. 2015/C3S_441_Lot2_UE

    A Human Development Framework for CO2 Reductions

    Get PDF
    Although developing countries are called to participate in CO2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300Gt of cumulative CO2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20% to 30% of previously calculated CO2 budgets limiting global warming to 2{\deg}C. These constraints and results are incorporated into a CO2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2{\deg}C target after a particular development threshold is reached. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100Gt of CO2. These values are within the uncertainty range of emissions to limit global temperatures to 2{\deg}C.Comment: 14 pages, 7 figures, 1 tabl

    Global environmental implications of atmospheric methane removal through chlorine-mediated chemistry-climate interactions

    Get PDF
    Atmospheric methane is both a potent greenhouse gas and photochemically active, with approximately equal anthropogenic and natural sources. The addition of chlorine to the atmosphere has been proposed to mitigate global warming through methane reduction by increasing its chemical loss. However, the potential environmental impacts of such climate mitigation remain unexplored. Here, sensitivity studies are conducted to evaluate the possible effects of increasing reactive chlorine emissions on the methane budget, atmospheric composition and radiative forcing. Because of non-linear chemistry, in order to achieve a reduction in methane burden (instead of an increase), the chlorine atom burden needs to be a minimum of three times the estimated present-day burden. If the methane removal target is set to 20%, 45%, or 70% less global methane by 2050 compared to the levels in the Representative Concentration Pathway 8.5 scenario (RCP8.5), our modeling results suggest that additional chlorine fluxes of 630, 1250, and 1880 Tg Cl/year, respectively, are needed. The results show that increasing chlorine emissions also induces significant changes in other important climate forcers. Remarkably, the tropospheric ozone decrease is large enough that the magnitude of radiative forcing decrease is similar to that of methane. Adding 630, 1250, and 1880 Tg Cl/year to the RCP8.5 scenario, chosen to have the most consistent current-day trends of methane, will decrease the surface temperature by 0.2, 0.4, and 0.6 °C by 2050, respectively. The quantity and method in which the chlorine is added, its interactions with climate pathways, and the potential environmental impacts on air quality and ocean acidity, must be carefully considered before any action is taken
    corecore