12 research outputs found

    Cytological and molecular characterization of three gametoclones of Citrus clementina

    Get PDF
    Abstract Background Three gametoclonal plants of Citrus clementina Hort. ex Tan., cv. Nules, designated ESP, FRA, and ITA (derived from three labs in Spain, France, and Italy, respectively), were selected for cytological and molecular characterization in order to elucidate genomic rearrangements provoked by haploidization. The study included comparisons of their ploidy, homozygosity, genome integrity, and gene dosage, using chromosome counting, flow cytometry, SSR marker genotyping, and array-Comparative Genomic Hybridization (arrayCGH). Results Chromosome counting and flow cytometry revealed that ESP and FRA were haploid, but ITA was tri-haploid. Homozygous patterns, represented by a single peak (allele), were observed among the three plants at almost all SSR loci distributed across the entire diploid donor genome. Those few loci with extra peaks visualized as output from automated sequencing runs, generally low or ambiguous, might result from amplicons of paralogous members at the locus, non-specific sites, or unexpected recombinant alleles. No new alleles were found, suggesting the genomes remained stable and intact during gametogenesis and regeneration. The integrity of the haploid genome also was supported by array-CGH studies, in which genomic profiles were comparable to the diploid control. Conclusions The presence of few gene hybridization abnormalities, corroborated by gene dosage measurements, were hypothetically due to the segregation of hemizygous alleles and minor genomic rearrangements occurring during the haploidization procedure. In conclusion, these plants that are valuable genetic and breeding materials contain completely homozygous and essentially intact genomes

    Characterization and comparability of biosimilars: A filgrastim case of study and regulatory perspectives for Latin America

    Get PDF
    Background: Developing countries have an estimate of ten times more approved biosimilars than developed countries. This disparity demands the need of an objective regulation that incorporates health policies according to the technological and economical capabilities of each country. One of the challenges lies on the establishment of comparability principles based on a physicochemical and biological characterization that should determine the extent of additional non-clinical and clinical studies. This is particularly relevant for licensed biosimilars in developing countries, which have an extensive clinical experience since their approval as generics, in some cases more than a decade. To exemplify the current status of biosimilars in Mexico, a characterization exercise was conducted on licensed filgrastim biosimilars using pharmacopeial and extended characterization methodologies. Results: Most of the evaluated products complied with the pharmacopeial criteria and showed comparability in their Critical Quality Attributes (CQAs) towards the reference product. These results were expected in accordance with their equivalent performance during their licensing as generics. Accordingly, a rational approval and registration renewal scheme for biosimilars is proposed, that considers the proper identification of CQAs and its thoroughly evaluation using selected techniques. Conclusions: This approach provides support to diminish uncertainty of exhibiting different pharmacological profiles and narrows or even avoids the necessity of comparative clinical studies. Ultimately, this proposal is intended to improve the accessibility to high quality biosimilars in Latin America and other developing countries

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation

    Estudio del sistema de costo directo est\ue1ndar implantado en la f\ue1brica venezolana de envases de aluminio FAVENAL S.A.

    No full text
    El presente trabajo esta dirigido a la realizaci\uf3n de un estudio detallado en el \ue1rea de contabilidad de costo y el an\ue1lisis del Sistema de Costo Directo Est\ue1ndar implantado en la Empresa Productora de Envases de Aluminio para Refrescos y Cervezas, FAVENAL, S.A

    Una nueva especie de M\ue9xico y Centroam\ue9rica, Marsdenia hiriartiana (Apocynaceae, Asclepiadoideae, Marsdenieae)

    No full text
    Volume: 15Start Page: 552End Page: 55

    Jumping to Conclusions bias, BADE and Feedback Sensitivity in schizophrenia and schizotypy

    No full text
    Several studies about schizophrenia have shown a cognitive bias named "Jumping to Conclusions" (JTC), defined as a decision made quickly on the basis of little evidence that occurs in these patients when performing probabilistic reasoning paradigms. The main objective of this study is to compare JTC bias and BADE (Bias Against Disconfirmatory Evidence) in patients with schizophrenia vs. participants with high/low schizotypy to understand the underlying mechanism of these cognitive biases. Probabilistic reasoning was assessed using a modified version of Drawing to Decision task. In addition to the traditional parameters of this task (Plausibility Rating (PR), Draws to Decision (DTD), BADE) we also calculated new parameters, overall accuracy and one named Feedback Sensitivity (FS) which lower scores shows greater use of feedback. The results of the study suggest a context effect: in the cued condition, there were not main differences between groups. In the uncued condition, we found higher JTC bias at stage 1 for patients. At the same time, PR at first stages related positively with Feedback Sensitivity and negatively with accuracy for patients and high schizotypy participants (high confidence is associated with worse performance and lower feedback use). BADE seems unrelated to JTC bias and FS. The results are discussed in terms of JTC like as a clinical bias and whether patients with schizophrenia are less able to use feedback

    A theoretical study on the geometry and spectroscopic properties of ground-state and local minima isomers of (CuS)n=2-6 clusters

    No full text
    Spectroscopic properties of gas-phase copper sulfide clusters (CuS) n (n = 2–6) are calculated using Density Functional Theory (DFT) and time-dependent (TD) DFT approaches. The energy landscape of the potential energy surface is explored through a basin-hopping DFT methodology. Ground-state and low-lying isomer structures are obtained. The global search was performed at the B3PW91/SDD level of theory. Normal modes are calculated to validate the existence of optimal cluster structures. Energetic properties are obtained for the ground-state and isomer clusters and their relative energies are evaluated for probing isomerization. This is a few tenths of an eV, except for (CuS) 2 cluster, which presents energy differences of ∼1 eV. Notable differences in the infrared spectra exist between the ground-state and first isomer structures, even for the (CuS) 5 cluster, which has in both configurations a core copper pyramid. TDDFT provides the simulated absorption spectrum, presenting a theoretical description of optical absorption bands in terms of electronic excitations in the UV and visible regions. Results exhibit a significant dependence of the calculated UV/vis spectra on clusters size and shape regarding the ground state structures. Optical absorption is strong in the UV region, and weak or forbidden in the visible region of the spectrum
    corecore