982 research outputs found

    Moving towards adaptive management of cyanotoxin-impaired water bodies

    Get PDF
    The cyanobacteria are a phylum of bacteria that have played a key role in shaping the Earth's biosphere due to their pioneering ability to perform oxygenic photosynthesis. Throughout their history, cyanobacteria have experienced major biogeochemical changes accompanying Earth's geochemical evolution over the past 2.5+ billion years, including periods of extreme climatic change, hydrologic, nutrient and radiation stress. Today, they remain remarkably successful, exploiting human nutrient over-enrichment as nuisance "blooms." Cyanobacteria produce an array of unique metabolites, the functions and biotic ramifications of which are the subject of diverse ecophysiological studies. These metabolites are relevant from organismal and ecosystem function perspectives because some can be toxic and fatal to diverse biota, including zooplankton and fish consumers of algal biomass, and high-level consumers of aquatic food sources and drinking water, including humans. Given the long history of environmental extremes and selection pressures that cyanobacteria have experienced, it is likely that that these toxins serve ecophysiological functions aimed at optimizing growth and fitness during periods of environmental stress. Here, we explore the molecular and ecophysiological mechanisms underlying cyanotoxin production, with emphasis on key environmental conditions potentially controlling toxin production. Based on this information, we offer potential management strategies for reducing cyanotoxin potentials in natural waters; for cyanotoxins with no clear drivers yet elucidated, we highlight the data gaps and research questions that are still lacking. We focus on the four major classes of toxins (anatoxins, cylindrospermopsins, microcystins and saxitoxins) that have thus far been identified as relevant from environmental health perspectives, but caution there may be other harmful metabolites waiting to be elucidated

    Propulsion System Choices and Their Implications

    Get PDF
    In defining a space vehicle architecture, the propulsion system and related subsystem choices will have a major influence on achieving the goals and objectives desired. There are many alternatives and the choices made must produce a system that meets the performance requirements, but at the same time also provide the greatest opportunity of reaching all of the required objectives. Recognizing the above, the SPST Functional Requirements subteam has drawn on the knowledge, expertise, and experience of its members, to develop insight that wiIJ effectively aid the architectural concept developer in making the appropriate choices consistent with the architecture goals. This data not only identifies many selected choices, but also, more importantly, presents the collective assessment of this subteam on the "pros" and the "cons" of these choices. The propulsion system choices with their pros and cons are presented in five major groups. A. System Integration Approach. Focused on the requirement for safety, reliability, dependability, maintainability, and low cost. B. Non-Chemical Propulsion. Focused on choice of propulsion type. C. Chemical Propulsion. Focused on propellant choice implications. D. Functional Integration. Focused on the degree of integration of the many propulsive and closely associated functions, and on the choice of the engine combustion power cycle. E. Thermal Management. Focused on propellant tank insulation and integration. Each of these groups is further broken down into subgroups, and at that level the consensus pros and cons are presented. The intended use of this paper is to provide a resource of focused material for architectural concept developers to use in designing new advanced systems including college design classes. It is also a possible source of input material for developing a model for designing and analyzing advanced concepts to help identify focused technology needs and their priorities

    Disease decreases variation in host community structure in an old-field grassland

    Full text link
    Disease may modulate variation in host community structure by modifying the interplay of deterministic and stochastic processes. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation in structure among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the duration of fungicide exposure and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. Despite changes in structure of the plant communities over the experiment’s three years, the effects of disease reduction on plant richness and biomass were consistent across years. However, disease reduction did not reduce variation in host community structure, providing little evidence for ecological selection by competition or other deterministic processes. Instead, disease reduction tended to amplify variation in host community structure among replicate communities (i.e., within fungicide treatment groups), suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure

    Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived From Lunar Polar Ice (LPI) Deposits

    Get PDF
    Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry-operated, privately financed venture, with NASA as its initial customer, might provide a possible blueprint for future development and operation With industry interested in developing cislunar space and commerce, and competitive forces at work, the timeline for developing this capability could well be accelerated, quicker than any of us can imagine, and just the beginning of things to come

    Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and Lunar Liquid Oxygen Derived from FeO-Rich Pyroclastic Deposits

    Get PDF
    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (Isp approx.900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehicles consisting of a propulsion stage using three approx.16.5 klbf Small Nuclear Rocket Engines (SNREs), an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The use of lunar liquid oxygen (LLO2) derived from iron oxide (FeO)-rich volcanic glass beads, found in numerous pyroclastic deposits on the Moon, can significantly reduce the launch mass requirements from Earth by enabling reusable, surface-based lunar landing vehicles (LLVs) using liquid oxygen/hydrogen (LO2/H2) chemical rocket engines. Afterwards, a LO2/H2 propellant depot can be established in lunar equatorial orbit to supply the LTS. At this point a modified version of the conventional NTR called the LOX-augmented NTR, or LANTR is introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat - essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service may be possible allowing one-way trip times to and from the Moon on the order of 36 hours or less. If only 1 of the extracted LLO2 propellant from identified resource sites were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! The proposed paper outlines an evolutionary architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LLO2 production as mission complexity and (Delta)V requirements increase. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a discussion of the propellant production and mining requirements associated with using FeO-rich volcanic glass as source material

    Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived from Lunar Polar Ice (LPI) Deposits

    Get PDF
    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehicles consisting of a propulsion stage using three approx.16.5 klbf "Small Nuclear Rocket Engines (SNREs)", an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong "tourism" missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The processing of LPI deposits (estimated to be approx. 2 billion metric tons) for propellant production - specifically liquid oxygen (LO2) and hydrogen (LH2) can significantly reduce the launch mass requirements from Earth and can enable reusable, surface-based lunar landing vehicles (LLVs) using LO2/LH2 chemical rocket engines. Afterwards, LO2/LH2 propellant depots can be established in lunar polar and equatorial orbits to supply the LTS. At this point a modified version of the conventional NTR called the LO2-augmented NTR, or LANTR would be introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants (LDPs) for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service may be possible allowing one-way trip times to and from the Moon on the order of 36 hours or less. If only 1 of the postulated water ice trapped in deep shadowed craters at the lunar poles were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! The proposed paper outlines an evolutionary mission architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LDP production as mission complexity and delta V requirements increase. A comparison of vehicle features and engine operating characteristics are also provided together with a discussion of the propellant production and mining requirements, and issues, associated with using LPI as the source material

    Robust Exploration and Commercial Missions to the Moon Using Nuclear Thermal Rocket Propulsion and In Situ Propellants Derived from Lunar Polar Ice Deposits

    Get PDF
    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (I(sub sp) ~900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehiclesconsisting of a propulsion stage using three ~16.5-klb(sub f) small nuclear rocket engines (SNREs), an in-line propellant tank, plus the payloadcan enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in situ propellant production used to supply strategically located propellant depots and transportation nodes. The processing of lunar polar ice (LPI) deposits (estimated to be ~2 billion metric tons) for propellant productionspecifically liquid oxygen (LO(sub 2)) and hydrogen (LH(sub 2))can significantly reduce the launch mass requirements from Earth and can enable reusable, surface-based lunar landing vehicles (LLVs) using LO(sub 2)/LH(sub 2) chemical rocket engines. Afterwards, LO(sub 2)/LH(sub 2) propellant depots can be established in lunar polar and equatorial orbits to supply the LTS. At this point a modified version of the conventional NTR called the LO(sub 2)-augmented NTR, or LANTR, would be introduced into the LTS, allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants (LDPs) for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throatessentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and I(sub sp) values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service may be possible, allowing one-way trip times to and from the Moon on the order of 36 hr or less. If only 1% of the postulated trapped water ice were available for use in lunar orbit, such a supply could support routine commuter flights to the Moon for many thousands of years. This report outlines an evolving LTS architecture that uses propellants derived from LPI and examines a variety of mission types and transfer vehicle designs along with their operating characteristics and increasing demands on LDP production as mission complexity and velocity change V requirements increase. A comparison of the LDP production and mining requirements using LPI and volcanic glass to produce lunar-derived liquid oxygen (LUNOX) via the hydrogen reduction process is included, and the synergy with an evolving helium-3 mining industry is also discussed

    Robust Exploration and Commercial Missions to the Moon Using Nuclear Thermal Rocket Propulsion and Lunar Liquid Oxygen Derived from FeO-Rich Pyroclasitc Deposits

    Get PDF
    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (I(sub sp) approx. 900 s) twice that of today's best chemical rockets. Nuclear lunar transfer vehicles-consisting of a propulsion stage using three approx. 16.5-klb(sub f) small nuclear rocket engines (SNREs), an in-line propellant tank, plus the payload-are reusable, enabling a variety of lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong ''tourism'' missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The use of lunar liquid oxygen (LLO2) derived from iron oxide (FeO)-rich volcanic glass beads, found in numerous pyroclastic deposits on the Moon, can significantly reduce the launch mass requirements from Earth by enabling reusable, surface-based lunar landing vehicles (LLVs)that use liquid oxygen and hydrogen (LO2/LH2) chemical rocket engines. Afterwards, a LO2/LH2 propellant depot can be established in lunar equatorial orbit to supply the LTS. At this point a modified version of the conventional NTR-called the LO2-augmented NTR, or LANTR-is introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an ''afterburner'' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat-essentially ''scramjet propulsion in reverse.'' By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and I(sub sp) values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short-transit-time crewed cargo transports. Even a ''commuter'' shuttle service may be possible allowing ''one-way'' trip times to and from the Moon on the order of 36 hours or less. If only 1% of the extracted LLO2 propellant from identified resource sites were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! This report outlines an evolutionary architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LLO2 production as mission complexity and velocity change delta V requirements increase. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a discussion of the propellant production and mining requirements associated with using FeO-rich volcanic glass as source material

    Robust Exploration and Commercial Missions to the Moon Using NTR LANTR Propulsion and Lunar-Derived Propellants

    Get PDF
    NASAs current focus is on the Journey to Mars sometime around the mid-to-late 2030s. However, it is also supporting the development of commercial cargo and crew delivery to the ISS (e.g., SpaceX, Orbital Sciences, SNC, Boeing) where inflatable habitation technology (e.g., Bigelow Aerospaces BEAM) is currently being tested Significant private sector interest in commercial lunar activities has also been expressed by Bigelow Aerospace, Golden Spike Company, Shackleton Energy Company (SEC), and most recently by United Launch Alliance (ULA) in their Cislunar-1000 plan Lunar-derived propellant (LDP) production specifically LLO2 and LLH2 offers significant mission leverage and are central themes of both SECs and ULAs plans for commercial lunar development. An efficient, proven propulsion technology with reuse capability like NTP offers the potential for affordable access through space essential to realizing commercial lunar missions.This presentation examines the performance potential of an evolutionary lunar transportation system (LTS) architecture using NTR initially, then transitioning to LANTR as LDPs(e.g., LLO2 from regolith or volcanic glass, LLO2 and LLH2 from lunar polar ice deposits) become available in lunar orbit (LO) Mission applications range from cargo delivery, to crewed landing, to routine commuter flights to and from transportation system nodes located in both lunar equatorial and lunar polar orbits. This presentation examines the performance potential of an evolutionary lunar transportation system (LTS) architecture using NTR initially, then transitioning to LANTR as LDPs (e.g., LLO2 from regolith or volcanic glass, LLO2 and LLH2 from lunar polar ice deposits) become available in lunar orbit (LO) Mission applications range from cargo delivery, to crewed landing, to routine commuter flights to and from transportation system nodes located in both lunar equatorial and lunar polar orbits
    • …
    corecore