research

Robust Exploration and Commercial Missions to the Moon Using NTR LANTR Propulsion and Lunar-Derived Propellants

Abstract

NASAs current focus is on the Journey to Mars sometime around the mid-to-late 2030s. However, it is also supporting the development of commercial cargo and crew delivery to the ISS (e.g., SpaceX, Orbital Sciences, SNC, Boeing) where inflatable habitation technology (e.g., Bigelow Aerospaces BEAM) is currently being tested Significant private sector interest in commercial lunar activities has also been expressed by Bigelow Aerospace, Golden Spike Company, Shackleton Energy Company (SEC), and most recently by United Launch Alliance (ULA) in their Cislunar-1000 plan Lunar-derived propellant (LDP) production specifically LLO2 and LLH2 offers significant mission leverage and are central themes of both SECs and ULAs plans for commercial lunar development. An efficient, proven propulsion technology with reuse capability like NTP offers the potential for affordable access through space essential to realizing commercial lunar missions.This presentation examines the performance potential of an evolutionary lunar transportation system (LTS) architecture using NTR initially, then transitioning to LANTR as LDPs(e.g., LLO2 from regolith or volcanic glass, LLO2 and LLH2 from lunar polar ice deposits) become available in lunar orbit (LO) Mission applications range from cargo delivery, to crewed landing, to routine commuter flights to and from transportation system nodes located in both lunar equatorial and lunar polar orbits. This presentation examines the performance potential of an evolutionary lunar transportation system (LTS) architecture using NTR initially, then transitioning to LANTR as LDPs (e.g., LLO2 from regolith or volcanic glass, LLO2 and LLH2 from lunar polar ice deposits) become available in lunar orbit (LO) Mission applications range from cargo delivery, to crewed landing, to routine commuter flights to and from transportation system nodes located in both lunar equatorial and lunar polar orbits

    Similar works