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Background Information and Presentation Overview 

• NASA’s current focus is on the “Journey to Mars” sometime around the mid-to-late 2030’s. However,

it is also supporting the development of commercial cargo and crew delivery to the ISS (e.g., SpaceX, 

Orbital Sciences, SNC, Boeing) where inflatable habitation technology (e.g., Bigelow Aerospace’s

BEAM) is currently being tested

• Significant private sector interest in commercial lunar activities has also been expressed by Bigelow 

Aerospace, Golden Spike Company, Shackleton Energy Company (SEC), and most recently by United 

Launch Alliance (ULA) in their “Cislunar-1000” plan 

• Lunar-derived propellant (LDP) production – specifically LLO2 and LLH2 – offers significant mission 

leverage and are central themes of both SEC’s and ULA’s plans for commercial lunar development  

• An efficient, proven propulsion technology with reuse capability – like NTP – offers the potential for  

affordable “access through space” essential to realizing commercial lunar missions

• Question: How can high performance NTP and the leverage potential of LDP best be exploited?

Answer: “LO2-Augmented” NTR (LANTR) – LH2-cooled NTR with “O2-afterburner” nozzle combines 

NTR and supersonic combustion ramjet engine technologies allowing “bipropellant” engine operation

• This presentation examines the performance potential of an “evolutionary” lunar transportation system 

(LTS) architecture using NTR initially, then transitioning to LANTR as LDP’s (e.g., LLO2 from regolith 

or volcanic glass, LLO2 and LLH2 from lunar polar ice deposits) become available in lunar orbit (LO) 

• Mission applications range from cargo delivery, to crewed landing, to routine commuter flights to and 

from transportation system nodes located in both lunar equatorial and lunar polar orbits  
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• Studies conducted by NASA and its contractors (early 1980’s – early 1990’s) indicated a

substantial benefit from using lunar-derived propellants – specifically lunar-derived LO2

(LLO2) or “LUNOX” in a lunar space transportation system (LTS)

• With a LTS using LO2/LH2 chemical rockets, ~6 kilograms (kg) of mass in low Earth orbit

(LEO) is required to place 1 kg of payload on the lunar surface (LS)

• Of this 6 kg, ~70% (4.2 kg) is propellant and 6/7th of this mass (3.6 kg) is oxygen assuming

an O/H MR = 6:1

• Since the cost of placing a kilogram of mass on the LS is ~6X the cost of delivering it to

LEO, the ability to produce and utilize LUNOX or lunar-derived LO2 and hydrogen (LLH2)

from lunar polar ice deposits can provide significant mission leverage

• Providing LUNOX for use in fuel cells, life support systems and LO2/LH2 chemical rockets

used on lunar landing vehicles (LLVs), can allow “high value” cargo (people, manufacturing

and scientific equipment, etc.) to be transported to LEO, then to the Moon instead of bulk

LO2 propellant

• Oxygen is abundant in the lunar regolith (~43% by mass) and can be extracted using a

variety of techniques, such as hydrogen reduction of “ilmenite (FeOTiO2)” or “FeO-rich”

volcanic glass (“orange soil”) discovered during the Apollo 17 mission to Taurus-Littrow

Benefits and Options for Using Lunar-Derived Propellants    
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Oxygen yield is directly related to iron abundance for the full range of

soil compositions. Highest yields are from “ FeO-rich” volcanic glass. 

The best lunar oxygen ore found during the Apollo Program is the volcanic glass,

(“orange soil”) found at Taurus-Littrow. The glass beads are ~40 mm in diameter.

The orange beads are clear glass, while the black beads cooled at bit more slowly

and had a chance to crystallize.

Oxygen production from “FeO-rich” volcanic glass is a 2 step process:
FeO + H2 -------> Fe + H2O                                          2 H2O -------> 2H2 + O2 (LUNOX)

(Hydrogen Reduction & Water Formation)            (Water Electrolysis & Hydrogen Recycling)

Ref: Carlton Allen, et al., “Oxygen extraction from lunar soils and pyroclastic glass”, 

J. Geophysical Research, Vol. 101, No. E11, pgs. 26,085 – 26,095, Nov. 25, 1996 

Volcanic Glass from the Apollo 17 Mission to

Taurus-Littrow is Attractive for LUNOX Production
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Extracting Water Ice from Permanently Shadowed Craters 

(Cold Traps) Found in the Moon’s Polar Regions

• Since the 1960’s, scientists have conjectured that water ice

could survive in the cold, permanently shadowed craters located

at the Moon’s poles

• The Clementine (1994), Lunar Prospector (1998), and

Chandrayaan-1 (2008) lunar probes have provided data 

indicating the possible existence of large quantities of water ice 

(100’s millions to billions of metric tons) at the lunar poles

• The Mini-SAR onboard Chandrayaan-1 discovered more than 

40 permanently shadowed craters near the lunar north pole that 

are thought to contain ~600 million metric tons of water ice 

• Lunar polar ice (LPI) deposits are important because they 

could supply both oxygen & hydrogen provided these deposits 

can be economically accessed, mined, processed and stored for 

their desired use

• Higher DV required to access LPO sites, candidate craters   

are deep and extremely cold (~50 K / -370 F) posing major 

mining challenges for mining and processing these cold 

materials (will probably need to warm material and equipment)

• LPI-derived water can then be electrolyzed on the Moon or in 

space (at an orbiting propellant depot) 

Lunar North Polar Region is Extremely Cold

Shackleton Crater at

Lunar South Pole

Rim / Floor Dia ~21 km / 6.6 km,

Depth ~4.2 km, 30 deg slope 
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Sampling of Crewed, Cargo & Commercial Lunar Transfer Vehicle

Concepts Developed by GRC During the Past 25 Years   

Expendable TLI Stage

for “First Lunar Outpost”
Mission uses 3 - 25 klbf

NTR Engines  – Fast 

Track Study (1992)

Reusable Lunar Transfer  

Vehicle uses Single 75 klbf

NTR Engine  – SEI (1990 - 91)

Reusable Lunar Cargo 

Transport uses  3 – 16.7  klbf

“SNRE-class” Engines – (2013)

Commercial Tourism Polar Orbit Mission uses  

3 – 16.7  klbf “SNRE-class” Engines – (2013)

Reusable Crewed Landing Mission uses  

3 – 16.7  klbf “SNRE-class” Engines – (2013)
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“Heritage” Fuel Element (FE) / Tie Tube (TT) Arrangement / 

Performance Parameters for Small Nuclear Rocket Engine

Baseline Small Nuclear Rocket Engine (SNRE) Performance Parameters:

• Engine Cycle: Expander • Thrust Level: 16.5 klbf • Reactor Exit Temperature: 2734 K • Chamber Pressure: 1000 psia

• Nozzle Area Ratio: 300:1 • Specific Impulse (Isp): ~900 s • Hydrogen Flow Rate: ~8.3 kg/s •  F / Weng Ratio: ~3.03

• Engine Length: ~5.8 m • Nozzle Exit Diameter: ~1.53 m • FE Length ~0.89 m (~35 inches) • No. FEs / TTs: 564 / 241

• FE-to-TT Ratio: ~2:1 • Reactor Power Level: ~365 MWt • Fuel Matrix Power Density: ~3.44 MWt / liter

• U-235 Enrichment: 93% • Fuel Loading: ~0.6 grams / cm3 • U-235 Inventory: ~60 kg

✓

Ref: S. K. Borowski, et al., “Affordable Development and Demonstration of a Small NTR 

Engine: How Small is Big Enough?”, AIAA-2015-4524; also as NASA/TM—2016-219402
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(Tex + DTC)

Hot H2 Exhaust (Tex)

“LO2-Augmented” NTR (LANTR) Concept:

Operational Features and Performance Characteristics 

O/H Mixture Ratio 0 1 2 3 4 5

Delivered Isp (s) 900** 725 637 588 552 516

Thrust Augmentation 

Factor
1.0 1.611 2.123 2.616 3.066 3.441

Thrust (lbf) 16,500 26,587 35,026 43,165 50,587 56,779

Engine Mass (lbm) 5,462 5,677 5,834 5,987 6,139 6,295

Engine T/W 3.02 4.68 6.00 7.21 8.24 9.02

** Fuel Exit Temperature (Tex)  = 2734 K, Chamber Pressure = 1000 psia and NAR = 300 to 1

GO2 

GO2

InjectionAerojet / GRC Non-Nuclear 

O2 “Afterburner” Nozzle Test*

LANTR adds an O2 “afterburner” nozzle and O2-rich GG feed system to a conventional NTR engine that provides

a variable thrust and Isp capability, shortens burn times, extends engine life, and allows bipropellant operation    

*Ref: M. J. Bulman and T. M. Neill, “Simulated LANTR Testing”, AIAA 2000–3897 
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Presented at AIAA 33rd Joint Propulsion 

Conference

Seattle, Washington, July 6–9, 1997 

AIAA-1997-2956

The Potential of LANTR Propulsion using Lunar-Derived Oxygen 

(LUNOX) was Analyzed by GRC more than 20 years ago!

• An evolutionary LTS was analyzed using conventional LH2-cooled NTP 

initially then transitioning to LANTR

• “FeO-rich” volcanic glass beads from the Taurus-Littrow dark mantle deposit 

(DMD) was the source material for LUNOX production

Images from “24 Hour Trips to the Moon using LANTR

Propulsion” Animation by NASA GRC / SAIC 

LLO Propellant Depot /

Transportation Node

LUNOX Tanker LLV

LEO Propellant Depot /

Transportation Node

PTM Unloading on 

Lunar Surface

Commuter Shuttle Departs LEO with 

Passenger Transport Module (PTM)
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Ref: S. K. Borowski, et al., “2001: A Space Odyssey” Revisited – The Feasibility 

of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX 

Afterburners”, AIAA-1997-2956; also as NASA/TM—199802-208830 / Rev2

Dark Mantle

Deposit (DMD)

Commercial

LUNOX Facility
Challenger

LM

Index Map Showing the Apollo 17 Landing Site and

Major Geographic Features of Taurus-Littrow Region

Vast deposits of “iron-rich” volcanic glass beads

have been identified at a number of candidate

sites on lunar near side (Sea of Serenity, Mare

Vaporum, Rima Bode,and Sinus Aestuum) and

the oxygen extraction process and efficiency

using these DMD materials are known

“Commercial” LUNOX Production Facility
Location: “Sea of Serenity” (Latitude: ~ 21o North / Longitude: ~29o East)
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Assumptions used in Analysis to Date

• An evolutionary LTS architecture is examined that uses a common NTPS with 3 – SNRE-class 

engines initially then transitions to LANTR engines and replaces in-line LH2 tank with a LOX tank

• “1-way” transit times range from 72 – 24 hours are considered. Missions depart from LEO, capture

into either lunar equatorial or polar orbits and then return to LEO (NOTE: Faster transit times preclude

use of free return trajectory like that used in Apollo 13)

• LDP Options: (1) LUNOX production from “FeO-rich” volcanic glass or (2) LLOX and LLH2 from LPI  

• Initial LUNOX production goal focused on supporting surface-based LLV operation allowing LTVs to 

transport more high value cargo   

• LANTR-powered LTVs use only Earth-supplied LH2 (ELH2) but refuel with LUNOX once it becomes 

available in LLO; O/H MR out and back was optimized to meet mission objectives and constraints

• LANTR LTVs also transport ELH2 for use by the LLVs and for use in the hydrogen reduction process

• Eventually, a propellant depot in LLO is supplied with LUNOX from tanker LLVs and ELH2 from either 

a dedicated NTR LH2 “tanker” or LANTR LTV 

• A propellant depot in LPO is supplied with H2O from tanker LLVs; LANTR LTVs / commuter shuttles 

refuel with LLOX but are limited to using only excess LLH2 from H2O electrolysis for Earth return
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5.8 m

Payload PVAs 

(1 of 2)
Small PVA

(1 of 2)
Common In-Line 

LH2 Tank

7.6 m

Common NTPS

Communications

Antenna  (1 of 2)

3 – 16.5 klbf

SNREs

26.5 m

20.7 m

20.7 m 26.8 m

~12 m

LLV with 2 Surface 

Payload (PL) Pallets

~8.3 m

Cryocooler

and RCS

Forward RCS

Orion MPCV

Saddle Truss with 

Docking Node

26.5 m

Twin PL Pallets

26.5 m

In-Line LO2 Tank

Electrical Conduit

Thrust 

Structure

~5.9 m

5.8 m 3 – SNRE-class 

LANTR Engines

a) Crewed Lunar Landing:

(LEO – LLO – 24-hr EEO)

• 4 crew

• MPCV + LLV ~48 t

• IMLEO ~176.6 t

• Max Lift ~70 t (NTPS)

• Total Mission Burn

Time: ~50 min

Saddle Truss

c) Crewed Lunar Landing:

(LEO – LLO – LEO)

• MPCV + 4 crew + 5 t PL

• Lunar Surface-based LLV

• IMLEO ~152.4 t

• Supplied LLO2 ~46.9 t

• Total Mission Burn

Time: ~25.3 min

b) Crewed Lunar Landing:

(LEO – LLO – 3.25-hr EEO)

• MPCV + 4 crew + 5 t PL

• Lunar Surface-based LLV

• IMLEO ~146 t

• Max Lift ~70 t (NTPS)

• Total Mission Burn

Time: ~50 min

Variation in NLTV Size, IMLEO, Mission Capability and Burn Time

Resulting from Use of LLO2 and Transition to LANTR Engines
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Crewed Cargo Transport:

• 36-hr “1-way” transit times

• Habitat Module w/4 crew ~11.2 t

• Star Truss w/5 t Payload ~8.6 t

• In-line LO2 element ~86.6 t

• Common LH2 NTPS ~ 70.9 t

• IMLEO ~177.4 t

• Refueled LLO2 ~71.6 t 

• Total Mission Burn

Time: ~25.3 min 

(LEO           LLO           LEO)

Case #4

Commuter 

Shuttle

with PTM

Crewed 

Cargo 

Transport

Space-based LANTR LTVs using a Common LH2 NTPS

and Customized In-Line LO2 Tank Element

Lunar Commuter Mission:

• 36-hr “1-way” transit times

• Passenger Transport Module  

(PTM) ~15.2 t; includes

• 18 passengers and 2 crew

• In-line LO2 element ~74.5 t

• Common LH2 NTPS ~ 70.9 t

• IMLEO ~160.6 t

• Refueled LLO2 ~67.9 t 

• Total Mission Burn

Time: ~25.3 min 

(LEO           LLO           LEO)

Case #5
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Case Description * Objective Trajectory/Orbits ** In-line LO2 Tank Results

1. Crewed LANTR LTV with

MPCV and 12 m saddle truss

carrying 5 t cargo to LLO

Determine LLO2 refueling needed 

to deliver 5 t cargo to LLO

72 hour 1-way transit times;

LEO – LLO – LEO

DV ~7.984 km/s

7.6 m OD x ~5.23 m L 

(~163.5 t LO2)

IMLEO ~ 152.4 t; ~48.8 t LO2

supplied in LEO; ~46.9 t LLO2

refueling in LLO

2. Crewed space-based LANTR LTV   

with 9.9 t hab module and 11 m 

star truss carrying 5 t cargo to LLO 

Determine LLO2 refueling needed 

to deliver 5 t cargo to LLO using

alternative LTV configuration

72 hour 1-way transit times;

LEO – LLO – LEO

DV ~7.996 km/s

4.6 m OD x ~3.4 m L

(~35.9 t LO2)

IMLEO ~ 131.1 t; ~35.9 t LO2

supplied in LEO; ~35.1 t LLO2

refueling in LLO

3. Crewed space-based LANTR LTV   

with 9.9 t hab module and 11 m 

star truss carrying 5 t cargo to LLO 

Determine LLO2 refueling needed 

to deliver 5 t cargo to LLO while

also cutting transit times to 48 hrs

48 hour 1-way transit times;

LEO – LLO – LEO

DV ~8.695 km/s

4.6 m OD x ~4.1 m L

(~48.0t LO2)

IMLEO ~ 143.4 t; ~48.0 t LO2

supplied in LEO; ~47.0 t LLO2

refueling in LLO

4. Crewed space-based LANTR LTV 

with 9.9 t hab module and 11 m 

star truss carrying 5 t cargo to LLO

Determine LLO2 refueling needed 

to deliver 5 t cargo to LLO while

also cutting transit times to 36 hrs

36 hour 1-way transit times;

LEO -– LLO – LEO

DV ~9.838 km/s

4.6 m OD x ~6.1 m L

(~81.2 t LO2)

IMLEO ~ 177.4 t; ~81.2 t LO2

supplied in LEO; ~71.6 t LLO2

refueling in LLO

5. LANTR commuter shuttle carrying

15 t Passenger Transport Module 

(PTM) to LLO then back to LEO

Determine LLO2 refueling needed 

to deliver the PTM to and from LLO     

with transit times of 36 hrs

36 hour 1-way transit times;

LEO – LLO – LEO

DV ~9.835 km/s

4.6 m OD x ~5.4 m L

(~69.3 t LO2)

IMLEO ~ 160.6 t; ~69.3 t LO2

supplied in LEO; ~67.9 t LLO2

refueling in LLO

6. LANTR commuter shuttle carrying

15 t PTM to LPO then back to LEO

Determine LLO2 refueling needed 

to deliver the PTM to and from LPO   

with transit times of 36 hrs

36 hour 1-way transit times;

LEO – LPO – LEO

DV ~10.006 km/s

4.6 m OD x ~6.0 m L

(~80.0 t LO2)

IMLEO ~ 172.5 t; ~80.0 t LO2

supplied in LEO; ~72.1 t LLO2

refueling in LLO

7. LANTR commuter shuttle carrying

15 t PTM to LPO then back to LEO

Determine LLO2 refueling needed 

to deliver the PTM to and from LPO;  

NTPS tops off with excess LLH2

36 hour 1-way transit times;

LEO – LPO – LEO

DV ~10.047 km/s

4.6 m OD x ~4.6 m L

(~56.4 t LO2)

IMLEO ~148.2 t; LTV refuels with  

~55.3 t LLO2 and NTPS tops off 

with ~6.9 t excess LLH2

8. Rapid commuter shuttle carrying

15 t PTM to LPO then back to LEO

Determine feasibility of 24 hour    

transits using twin LANTR engines; 

NTPS tops off with excess LLH2

24 hour 1-way transit times;

LEO – LPO – LEO

DV ~13.225 km/s

4.6 m OD x ~8.3 m L

(~116.6 t LO2)

IMLEO ~204.3 t; LTV refuels with  

~105.6 t LLO2 and NTPS tops off 

with ~13.2 t excess LLH2

* Cases 1 – 8 use a “Common NTPS” (carries ~39.7 t LH2); Propellant depots assumed in LEO, LLO and LPO; LANTR engines use optimized MRs 

**LEO – 407 km, LLO – 300 km equatorial, LPO – 300 km polar orbit; Total round trip mission DV values shown include g-losses

Sampling of LANTR Missions, Vehicle Types, and Refueling

Needs Using Volcanic Glass and LPI as Source Material
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At the southeastern edge of the “Sea of Serenity” lies a vast deposit (~4000 km2) of
iron-rich volcanic glass beads tens of meters thick (one of many sites on lunar nearside)

Could supply enough LUNOX for daily 24 hour commuter flights to Moon for next 9000 yrs!

Ref: S. K. Borowski, et al., “2001: A Space Odyssey” Revisited – The Feasibility of 24 Hour Commuter 

Flights to the Moon Using NTR Propulsion with LUNOX Afterburners”, AIAA-1997-2956

Mining Area and LUNOX Production Rates to

Support “24 Hour” Lunar Commuter Flights
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Water Composition: MH20 = MO2 + MH2

and for MO2 / MH2 = 8 

MH20 = 9 x MH2 = 1.125 x MO2

• Quantities of LDPs and required power levels will depend on mission type and frequency

• Ex: Tanker LLV (Isp = 465 s; O/H MR = 6:1) delivering H2O to LPO depot also requires LLO2 and LLH2

• To produce 100 t of LO2 (+ 12.5 t of LH2 byproduct) on LS or depot requires electrolysis of 112.5 t H2O

• Required Energy for Electrolysis = 112.5 x 103 kg x 4.9 kWe- hr / kg = 5.513 x 105 kWe- hr

• Produced over 26 weeks (4.38 x 103 hr) requires ~126 kWe

• Produced over 1 week (168 hr) requires ~3.28 MWe

Input Power (kWe) ~4.9 x H2O Electrolysis Rate (kg/hr)

Water

(H2O)

Oxygen

(O2)

Hydrogen

(H2)

Electrolysis

Cell

Power Requirements for Electrolysis of Lunar-derived H2O  

to Produce LLO2 and LLH2 Propellants

Total power requirement will include mining, 

beneficiation (if required), processing and 

H2O formation, electrolysis and storage)
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Summary and Conclusions

• NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from 

using LDPs – “when they become available” – by transitioning to LANTR propulsion

•  LANTR provides a variable thrust and Isp capability, shortens burn times and extends engine life, and 

allows bipropellant operation

• Production of LUNOX from vast volcanic glass deposits is more established (O2 extraction efficiency, 

location of candidate sites and estimated quantities of source materials) than mining and extraction of H2O 

from ice deposits located within deep, permanently shadowed, and extremely cold craters located at the 

Moon’s poles. Preliminary analysis and implications of using each option have been identified  

• Additional analyses & trade studies are required to better understand the pros & cons of each option

Future Work and Possible Trades

• Number of LANTR engines to use on the NTPS (also LH2 tank size and propellant capacity)

• Size options for in-line LO2 tank (4.6 m diameter or larger? fixed tank length or customized?) 

• LDP production levels and power requirements to reach certain mission / performance levels

(must consider the total requirements for both the LLVs as well as the LTS)

• Power levels required for surface production of LDPs versus that required for H2O electrolysis at 

depot – Is there an identifiable split on power level for both application? 

• Use of solar power versus nuclear power on lunar surface and in lunar orbit 

• Use of GO2/GH2 RCS instead of storable bipropellant system

• Possible use of EML1 for staging node and propellant depot location


