2,617 research outputs found

    Decoding a Complex Visualization in a Science Museum -- An Empirical Study

    Full text link
    This study describes a detailed analysis of museum visitors' decoding process as they used a visualization designed to support exploration of a large, complex dataset. Quantitative and qualitative analyses revealed that it took, on average, 43 seconds for visitors to decode enough of the visualization to see patterns and relationships in the underlying data represented, and 54 seconds to arrive at their first correct data interpretation. Furthermore, visitors decoded throughout and not only upon initial use of the visualization. The study analyzed think-aloud data to identify issues visitors had mapping the visual representations to their intended referents, examine why they occurred, and consider if and how these decoding issues were resolved. The paper also describes how multiple visual encodings both helped and hindered decoding and concludes with implications on the design and adaptation of visualizations for informal science learning venues.Comment: IEEE VIS (InfoVis/VAST/SciVis) 2019 ACM 2012 CCS - Human-centered computing, Visualization, Empirical studies in visualizatio

    Design of electronics for a high-resolution, multi-material, and modular 3D printer

    Get PDF
    Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 66-68).Electronics for a high-resolution, multi-material, and modular 3D printer were designed and implemented. The driver for a piezoelectric inkjet print head can fire its nozzles with one of three droplet sizes ranging from 6 pL to 26 pL at approximately 10 kHz. The system developed for curing photopolymer materials is low-power, low-cost, and safe, using ultraviolet light-emitting diodes instead of a gas-discharge lamp. Fabrication cost is less than $10,000, but the printer's 600 DPI resolution is comparable to that of industrial 3D printers. Printed objects exhibit detailed features and a gradual transition between materials with different mechanical properties. The printer's modular design allows modification of the printer to employ different fabrication technologies.by Joyce G. Kwan.M. Eng

    Sea of Genes: Combining Animation and Narrative Strategies to Visualize Metagenomic Data for Museums

    Full text link
    We examine the application of narrative strategies to present a complex and unfamiliar metagenomics dataset to the public in a science museum. Our dataset contains information about microbial gene expressions that scientists use to infer the behavior of microbes. This exhibit had three goals: to inform (the) public about microbes' behavior, cycles, and patterns; to link their behavior to the concept of gene expression; and to highlight scientists' use of gene expression data to understand the role of microbes. To address these three goals, we created a visualization with three narrative layers, each layer corresponding to a goal. This study presented us with an opportunity to assess existing frameworks for narrative visualization in a naturalistic setting. We present three successive rounds of design and evaluation of our attempts to engage visitors with complex data through narrative visualization. We highlight our design choices and their underlying rationale based on extant theories. We conclude that a central animation based on a curated dataset could successfully achieve our first goal, i.e., to communicate the aggregate behavior and interactions of microbes. We failed to achieve our second goal and had limited success with the third goal. Overall, this study highlights the challenges of telling multi-layered stories and the need for new frameworks for communicating layered stories in public settings.Comment: This manuscript has been accepted to VIS 2020 and TVCG 9 pages 2 reference

    MultiFab: a machine vision assisted platform for multi-material 3D printing

    Get PDF
    We have developed a multi-material 3D printing platform that is high-resolution, low-cost, and extensible. The key part of our platform is an integrated machine vision system. This system allows for self-calibration of printheads, 3D scanning, and a closed-feedback loop to enable print corrections. The integration of machine vision with 3D printing simplifies the overall platform design and enables new applications such as 3D printing over auxiliary parts. Furthermore, our platform dramatically expands the range of parts that can be 3D printed by simultaneously supporting up to 10 different materials that can interact optically and mechanically. The platform achieves a resolution of at least 40 μm by utilizing piezoelectric inkjet printheads adapted for 3D printing. The hardware is low cost (less than $7,000) since it is built exclusively from off-the-shelf components. The architecture is extensible and modular -- adding, removing, and exchanging printing modules can be done quickly. We provide a detailed analysis of the system's performance. We also demonstrate a variety of fabricated multi-material objects.National Science Foundation (U.S.) (Grant CCF-1138967)United States. Defense Advanced Research Projects Agency (Grant N66001-12-1-4242

    Growing Extended Laughlin States in a Quantum Gas Microscope: A Patchwork Construction

    Full text link
    The study of fractional Chern insulators and their exotic anyonic excitations poses a major challenge in current experimental and theoretical research. Quantum simulators, in particular ultracold atoms in optical lattices, provide a promising platform to realize, manipulate, and understand such systems with a high degree of controllability. Recently, an atomic ν=1/2\nu=1/2 Laughlin state has been realized experimentally for a small system of two particles on 4 by 4 sites. The next challenge concerns the preparation of Laughlin states in extended systems, ultimately giving access to anyonic braiding statistics or gapless chiral edge-states in systems with open boundaries. Here, we propose and analyze an experimentally feasible scheme to grow larger Laughlin states by connecting multiple copies of the already existing 4-by-4-system. First, we present a minimal setting obtained by coupling two of such patches, producing an extended 8-by-4-system with four particles. Then, we analyze different preparation schemes, setting the focus on two shapes for the extended system, and discuss their respective advantages: While growing strip-like lattices could give experimental access to the central charge, square-like geometries are advantageous for creating quasi-hole excitations in view of braiding protocols. We highlight the robust quantization of the fractional quasi-hole charge upon using our preparation protocol. We benchmark the performance of our patchwork preparation scheme by comparing it to a protocol based on coupling one-dimensional chains. We find that the patchwork approach consistently gives higher target-state fidelities, especially for elongated systems. The results presented here pave the way towards near-term implementations of extended Laughlin states in quantum gas microscopes and the subsequent exploration of exotic properties of topologically ordered systems in experiments.Comment: 18 pages, 21 figure

    Signatures of bath-induced quantum avalanches in a many-body--localized system

    Full text link
    Strongly correlated systems can exhibit surprising phenomena when brought in a state far from equilibrium. A spectacular example are quantum avalanches, that have been predicted to run through a many-body--localized system and delocalize it. Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath. Here we realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics. We find evidence for accelerated transport into the localized region, signature of a quantum avalanche. By measuring the site-resolved entropy we monitor how the avalanche travels through the localized system and thermalizes it site by site. Furthermore, we isolate the bath-induced dynamics by evaluating multipoint correlations between the bath and the system. Our results have fundamental implications on the robustness of many-body--localized systems and their critical behavior.Comment: 5+2 pages, 4 figure
    • …
    corecore