28 research outputs found

    Coal-fired power plants energy efficiency and climate change: Current state and future trends

    Get PDF
    Termoelektrane na fosilna goriva, pre svega ugalj, emituju velike količine ugljen dioksida, koji se smatra glavnim uzročnikom fenomena globalnog zagrevanja. Smanjenje emisije CO2 u energetskom sektoru je postalo jedan od osnovnih prioriteta svih nacionalnih vlada. Sa druge strane, globalno zagrevanje direktno utiče na proizvodnju energije. Ovaj uticaj se pre svega ogleda u mogućnosti odvođenja otpadne toplote, neophodnog za rad postrojenja. U doglednoj budućnosti efikasnost rada postojećih termoenergetskih postrojenja opadati, ukoliko se ne ulože dodatni napori kako bi se unapredio njihov rad, posebno imajući u vidu optimizaciju rada kondenzacionog dela postrojenja, a ovo opet vodi povećanoj emisiji CO2. Predviđeni porast potroÅ”nje energije dodatno podvlači ovaj problem.U radu je dat pregled danaÅ”njih metoda za smanjenje emisije CO2 u atmosferu, ali je osnovni cilj rada da ukaže na mogućnosti povećanja energetske efikasnosti postojećih postrojenja, uz relativno mala ekonomska ulaganja, čime bi se smanjili i ekoloÅ”ki problemi. Prikazan je uticaj porasta temperature rashladne vode i vazduha na energetsku efikasnost termoelektrana u Srbiji sa protočnim i povratnim sistemom hlađenja. Rezultati su dobijeni na osnovu originalnih matematičkih modela i numeričkih simulacija, koje su autori predstavili u drugim radovima. Dobijeni rezultati mogu biti od koristi kako pri revitalizaciji postojećih, tako i pri projektovanju novih termoenergetskih kapaciteta.Coal-fired power plants emit large amounts of CO2, which constitutes one of the largest causes of global warming. Reducing CO2 emissions in the energy sector has become a top priority for national governments. On the other hand, fossil energy production is also affected by air and water temperatures. Local weather conditions affect the capacity of cooling towers and natural water bodies to transfer waste heat from steam condensers to the atmosphere. Without technology-based improvements in cooling system efficiency, the steam-cycle energy efficiency would decrease. This again leads to increased consumption of fossil fuels and thus increasing emissions of CO2. Increasing in global energy demand aggravates this issue. In this paper, the overview of currently actual methods for CO2 reduction is given. The main objective, however, is to find a cost-effective solution for increasing the energy efficiency of existing plants in Serbia. The overview of cooling water temperature increase impact on the energy efficiency in Serbian power plants is given, based on meteorological data and numerical simulation. This study is done for both, power plants with once-through and with closed cycle cooling system. Obtained results could be used as useful guidelines in design of the new power plants and also in improving existing power plants performances

    Coal-fired power plants energy efficiency and climate change: Current state and future trends

    Get PDF
    Termoelektrane na fosilna goriva, pre svega ugalj, emituju velike količine ugljen dioksida, koji se smatra glavnim uzročnikom fenomena globalnog zagrevanja. Smanjenje emisije CO2 u energetskom sektoru je postalo jedan od osnovnih prioriteta svih nacionalnih vlada. Sa druge strane, globalno zagrevanje direktno utiče na proizvodnju energije. Ovaj uticaj se pre svega ogleda u mogućnosti odvođenja otpadne toplote, neophodnog za rad postrojenja. U doglednoj budućnosti efikasnost rada postojećih termoenergetskih postrojenja opadati, ukoliko se ne ulože dodatni napori kako bi se unapredio njihov rad, posebno imajući u vidu optimizaciju rada kondenzacionog dela postrojenja, a ovo opet vodi povećanoj emisiji CO2. Predviđeni porast potroÅ”nje energije dodatno podvlači ovaj problem.U radu je dat pregled danaÅ”njih metoda za smanjenje emisije CO2 u atmosferu, ali je osnovni cilj rada da ukaže na mogućnosti povećanja energetske efikasnosti postojećih postrojenja, uz relativno mala ekonomska ulaganja, čime bi se smanjili i ekoloÅ”ki problemi. Prikazan je uticaj porasta temperature rashladne vode i vazduha na energetsku efikasnost termoelektrana u Srbiji sa protočnim i povratnim sistemom hlađenja. Rezultati su dobijeni na osnovu originalnih matematičkih modela i numeričkih simulacija, koje su autori predstavili u drugim radovima. Dobijeni rezultati mogu biti od koristi kako pri revitalizaciji postojećih, tako i pri projektovanju novih termoenergetskih kapaciteta.Coal-fired power plants emit large amounts of CO2, which constitutes one of the largest causes of global warming. Reducing CO2 emissions in the energy sector has become a top priority for national governments. On the other hand, fossil energy production is also affected by air and water temperatures. Local weather conditions affect the capacity of cooling towers and natural water bodies to transfer waste heat from steam condensers to the atmosphere. Without technology-based improvements in cooling system efficiency, the steam-cycle energy efficiency would decrease. This again leads to increased consumption of fossil fuels and thus increasing emissions of CO2. Increasing in global energy demand aggravates this issue. In this paper, the overview of currently actual methods for CO2 reduction is given. The main objective, however, is to find a cost-effective solution for increasing the energy efficiency of existing plants in Serbia. The overview of cooling water temperature increase impact on the energy efficiency in Serbian power plants is given, based on meteorological data and numerical simulation. This study is done for both, power plants with once-through and with closed cycle cooling system. Obtained results could be used as useful guidelines in design of the new power plants and also in improving existing power plants performances

    Numerical computation and prediction of electricity consumption in tobacco industry

    Get PDF
    Electricity is a key energy source in each country and an important condition for economic development. It is necessary to use modern methods and tools to predict energy consumption for different types of systems and weather conditions. In every industrial plant, electricity consumption presents one of the greatest operating costs. Monitoring and forecasting of this parameter provide the opportunity to rationalize the use of electricity and thus significantly reduce the costs. The paper proposes the prediction of energy consumption by a new time-series model. This involves time series models using a set of previously collected data to predict the future load. The most commonly used linear time series models are the AR (Autoregressive Model), MA (Moving Average) and ARMA (Autoregressive Moving Average Model). The AR model is used in this paper. Using the AR (Autoregressive Model) model, the Monte Carlo simulation method is utilized for predicting and analyzing the energy consumption change in the considered tobacco industrial plant. One of the main parts of the AR model is a seasonal pattern that takes into account the climatic conditions for a given geographical area. This part of the model was delineated by the Fourier transform and was used with the aim of avoiding the model complexity. As an example, the numerical results were performed for tobacco production in one industrial plant. A probabilistic range of input values is used to determine the future probabilistic level of energy consumption

    Risk of thermal pollution of the danube passing through Serbia due to thermal power plants

    Get PDF
    A thermal power plant (TPP) uses large amounts of fresh water, mostly for cooling purposes. Among different types of cooling systems, once-through cooling is the most water-intensive and has the greatest environmental impacts. From the view-point of the steam cycle efficiency, this type of cooling still provides the most efficient electricity production, and therefore is widely used. Water is withdrawn from nearby water bodies, absorbs heat from the steam in a condenser, and then discharged back to its original source at higher temperatures causing severe environmental impacts, including fish killing, disturbing ecosystems, and heating-up natural water bodies. The total installed capacity of almost 1100 MW on the right bank of the Danube in Serbia threatens the ecosystem of this large international river due to thermal pollution. This problem will be even more pronounced in the near future, due to an inevitable increase in production capacity for new 350 MW, currently under construction. Herein, analysis of the legal framework for the protection of water from thermal pollution as well as analysis of the actual situation on the site of the TPP "Kostolac" in Serbia are presented. Based on meteorological and hydrological parameters, configuration and operation parameters of the plant, the numerical simulation of the condenser was carried on. The temperature of the water leaving condenser and amount of heat discharged back to the river are obtained. According to those results, the analysis of the existing thermal pollution of the Danube River in the flow through Serbia is given by numerical simulation using software ANSYS CFX. Analysis of thermal discharge into the Danube for the five-year period has been carried out. The cooling water effluent causes a temperature increase in the area of the right bank of the Danube, and this thermal disturbance extends along the right river bank for kilometers. Note that the flow rate of the Danube is currently large enough to compensate this thermal disturbance, but for a smaller river and/or larger electricity production capacities, this influence would have even more significant consequences on the ecosystem, making those results even more useful for further analysis

    Impact of Clonal Variability on Phenolics and Radical Scavenging Activity of Grapes and Wines: A Study on the Recently Developed Merlot and Cabernet Franc Clones (Vitis vinifera L.)

    Get PDF
    In this study, grapes and corresponding wines of Merlot /No 022, 025 and 029/ and Cabernet Franc /No 02, 010 and 012/ clones (recently developed) were evaluated regarding the total phenolic content, total anthocyanin content, and radical scavenging activity, aiming to better understand their quality and market potential. The nineteen individual polyphenols were quantified in studied grape samples using UHPLC coupled to a triple-quadrupole mass spectrometer. The mother grapes and wines were used as the relevant standards. In the grape, studied characteristics were monitored at three stages of berry development: green berry, veraison and mature berry. The mature grape of clones presented high values of total phenolics (3.81-10.89 g gallic acid equivalent kg(-1) frozen weight), anthocyanin content (359.00-1668.18 mg malvidin-3-O-glucoside kg(-1) frozen weight) and the radical scavenging activity (41.37-80.48 mmol trolox equivalent kg(-1) frozen weight) depending on the clone. Grapes and wines of Merlot No 025 and Cabernet Franc No 010 stood out with the highest values of all three parameters. Generally, the high correlation was observed between TPC and RSA values for green berries and mature grapes, as well as for wine samples. The most abundant phenolics in both Merlot and Cabernet Franc grapes were gallic acid, p-hydroxybenzoic acid, ferulic acid, catechin, epicatechin, gallocatechin gallate, catechin gallate, and rutin. Catechin, epicatechin, epigallocatechin, and catechin gallate, typical for the ripe grape of Merlot and Cabernet Franc clones, showed significant correlation with RSA values. Concentrations of individual polyphenols varied depending on the sample being studied and berry development stages. Merlot No 025 and Cabernet Franc No 010 grapes showed particularly interesting attributes for the production of high quality wines.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3535

    Improving the energy efficiency of a 110 MW thermal power plant by low-cost modification of the cooling system

    No full text
    The electric power system of the Republic of Serbia relies mostly on lignite-fired thermal power plants, with 70% of the total electricity generation. Most of these plants are over 30 years old, and investment in their modernization is necessary. The energy efficiency of the 110 MW coal-fired power plant in which the condenser is cooled by the mechanical draught wet cooling towers system is analyzed in this paper. Attention is primarily devoted to operating conditions of the cold end of the plant, i.e. to the interrelationship of the condenser and cooling towers. Most important parameters that affect the operation of the cooling towers system are ambient air temperature and relative humidity, specific mass flow rate, and temperature of cooled water. With the existing cooling system, the overall energy efficiency of the plant is low, especially in the summer months, even less than 30%, due to adverse weather conditions. By upgrading existing cooling tower system by adaptation of two additional cooling tower cells, overall energy efficiency can be increased by 1.5%. The cooling tower system rehabilitation investments payback period is estimated to be less than one year. Static method for economic and financial assessment is used

    Industrial cooling tower design and operation in the moderate-continental climate conditions

    Get PDF
    A large number of producers offer a wide choice of various types of industrial cooling towers. Usually, a proper choice of pre-fabricated cooling tower satisfies end-user needs. However, if there are specific end-user requirements, it is necessary to design cooling tower according to those requirements. For the adhesive factory located in southern region of Serbia, 350 kW mechanical draught wet cooling tower was designed and built. Dimensioning of the cooling tower was done according to parameters of the ambient air, higher than the standard recommendations given in the literature. In this paper, the reasons for deviation from recommendations are given. The analysis of the cooling tower operation based on real meteorological parameters for 2015 is also shown in this paper. According to this analysis, cooling tower provides required water temperature in any season, and gives opportunity for energy savings in winter, with opportunity for heat capacity enlargement if production capacity is raised as it is planned in the factory

    Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres

    No full text
    The formation of hydroxyl radical and long-living chemical species (H2O2, O-3, NO3- and NO2-) generated in the liquid phase of a water falling film dielectric barrier discharge in dependence on the gas atmosphere (air, nitrogen, oxygen, argon and helium) was studied. The chemical molecular probe dimethyl sulfoxide was employed for quantification of. OH, and the influence of hydroxyl radical scavenging on formation of reactive oxygen and nitrogen species was investigated. In addition to liquid analysis, plasma diagnostics was applied to indicate possible reaction pathways of plasma-liquid interaction. The highest. OH production rate of 1.19 x 10 (5) mol l (1) s (1) was found when water was treated in oxygen, with a yield of 2.75 x 10(-2) molecules of. OH per 100 eV. Formation of hydrogen peroxide in air, nitrogen and argon discharges is determined by recombination reaction of hydroxyl radicals, reaching the highest yield of about 0.7 g kWh(-1) when distilled water was treated in argon discharge. Ozone formation was dominant in oxygen and air discharges. Strong acidification along with formation of reactive nitrogen species was detected in water treated in air and nitrogen discharges
    corecore