1,328 research outputs found

    Absolute timing of the Crab pulsar with the INTEGRAL/SPI telescope

    Full text link
    We have investigated the pulse shape evolution of the Crab pulsar emission in the hard X-ray domain of the electromagnetic spectrum. In particular, we have studied the alignment of the Crab pulsar phase profiles measured in the hard X-rays and in other wavebands. To obtain the hard X-ray pulse profiles, we have used six year (2003-2009, with a total exposure of about 4 Ms) of publicly available data of the SPI telescope on-board of the INTEGRAL observatory, folded with the pulsar time solution derived from the Jodrell Bank Crab Pulsar Monthly Ephemeris. We found that the main pulse in the hard X-ray 20-100 keV energy band is leading the radio one by 8.18±0.468.18\pm0.46 milliperiods in phase, or 275±15μs275\pm15 \mu s in time. Quoted errors represent only statistical uncertainties.Our systematic error is estimated to be ∼40μs\sim 40 \mu s and is mainly caused by the radio measurement uncertainties. In hard X-rays, the average distance between the main pulse and interpulse on the phase plane is 0.3989±0.00090.3989\pm0.0009. To compare our findings in hard X-rays with the soft 2-20 keV X-ray band, we have used data of quasi-simultaneous Crab observations with the PCA monitor on-board the Rossi X-Ray Timing Explorer (RXTE) mission. The time lag and the pulses separation values measured in the 3-20 keV band are 0.00933±0.000160.00933\pm0.00016 (corresponding to 310±6μs310\pm6 \mu s) and 0.40016±0.000280.40016\pm0.00028 parts of the cycle, respectively. While the pulse separation values measured in soft X-rays and hard X-rays agree, the time lags are statistically different. Additional analysis show that the delay between the radio and X-ray signals varies with energy in the 2 - 300 keV energy range. We explain such a behaviour as due to the superposition of two independent components responsible for the Crab pulsed emission in this energy band

    The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980–1999

    Get PDF
    We present a description and evaluation of the Chemistry-Climate Model (CCM) LMDz-REPROBUS, which couples interactively the extended version of the Laboratoire de Météorologie Dynamique General Circulation Model (LMDz GCM) and the stratospheric chemistry module of the REactive Processes Ruling the Ozone BUdget in the Stratosphere (REPROBUS) model. The transient simulation evaluated here covers the period 1980&ndash;1999. The introduction of an interactive stratospheric chemistry module improves the model dynamical climatology, with a substantial reduction of the temperature biases in the lower tropical stratosphere. However, at high latitudes in the Southern Hemisphere, a negative temperature bias, that is already present in the GCM version, albeit with a smaller magnitude, leads to an overestimation of the ozone depletion and its vertical extent in the CCM. This in turn contributes to maintain low polar temperatures in the vortex, delay the break-up of the vortex and the recovery of polar ozone. The latitudinal and vertical variation of the mean age of air compares favourable with estimates derived from long-lived species measurements, though the model mean age of air is 1&ndash;3 years too young in the middle stratosphere. The model also reproduces the observed "tape recorder" in tropical total hydrogen (=H<sub>2</sub>O+2&times;CH<sub>4</sub>), but its propagation is about 30% too fast and its signal fades away slightly too quickly. The analysis of the global distributions of CH<sub>4</sub> and N<sub>2</sub>O suggests that the subtropical transport barriers are correctly represented in the simulation. LMDz-REPROBUS also reproduces fairly well most of the spatial and seasonal variations of the stratospheric chemical species, in particular ozone. However, because of the Antarctic cold bias, large discrepancies are found for most species at high latitudes in the Southern Hemisphere during the spring and early summer. In the Northern Hemisphere, polar ozone depletion and its variability are underestimated in the simulation

    Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation

    Get PDF
    We study a quasilinear parabolic Cauchy problem with a cumulative distribution function on the real line as an initial condition. We call 'probabilistic solution' a weak solution which remains a cumulative distribution function at all times. We prove the uniqueness of such a solution and we deduce the existence from a propagation of chaos result on a system of scalar diffusion processes, the interactions of which only depend on their ranking. We then investigate the long time behaviour of the solution. Using a probabilistic argument and under weak assumptions, we show that the flow of the Wasserstein distance between two solutions is contractive. Under more stringent conditions ensuring the regularity of the probabilistic solutions, we finally derive an explicit formula for the time derivative of the flow and we deduce the convergence of solutions to equilibrium.Comment: Stochastic partial differential equations: analysis and computations (2013) http://dx.doi.org/10.1007/s40072-013-0014-

    Implementing STARTALK-endorsed principles in an intensive summer LCTL program: Challenges and implications

    Get PDF
    This paper discusses how STARTALK-endorsed principles were adopted in a first-year STARTALK summer program in three LCTLs: Arabic, Persian and Turkish. Our 34 high school and college participants were enrolled in seven week, six-credit intensive introductory college courses. All students began at the Novice-low proficiency level in each LCTL. The program effectiveness was assessed by students’ learning outcomes (ACTFL-based proficiency test results and LinguaFolio evidence) and evaluated by a site visit team’s observation report, program exit surveys and student project work. Students’ oral proficiency scores showed a significant improvement ranging from the Novice level to Intermediate low/high. Triangulation of the qualitative data also revealed overall positive attitudes toward this immersive and learner-centered program that integrated language, culture, and content in LCTLs. Positive results did not come without some challenges in curriculum design and technological integration. Lessons learned and pedagogical implications are provided for others interested in implementing similar programs

    New Analytical Methods for Camera Trap Data

    Get PDF
    Density estimation of terrestrial mammals has become increasingly important in ecology, and robust analytical tools are required to provide results that will guide wildlife management. This thesis concerns modelling encounters between unmarked animals and camera traps for density estimation. We explore Rowcliffe et al. (2008) Random Encounter Model (REM) developed for estimating density of species that cannot be identified to the individual level from camera trap data. We demonstrate how REM can be used within a maximum likelihood framework to estimate density of unmarked animals, motivated by the analysis of a data set from Whipsnade Wild Animal Park (WWAP), Bedfordshire, south England. The remainder of the thesis focuses on developing and evaluating extended Random Encounter Models, which describe the data in an integrated population modelling framework. We present a variety of approaches for modelling population abundance in an integrated Random Encounter Model (iREM), where complicating features are the variation in the encounters and animal species. An iREM is a more flexible and robust parametric model compared with a nonparametric REM, which produces novel and meaningful parameters relating to density, accounting for the sampling variability in the parameters required for density estimation. The iREM model we propose can describe how abundance changes with diverse factors such as habitat type and climatic conditions. We develop models to account for induced-bias in the density from faster moving animals, which are more likely to encounter camera traps, and address the independence assumption in integrated population models. The models we propose consider a functional relationship between a camera index and animal density and represent a step forward with respect to the current simplistic modelling approaches for abundance estimation of unmarked animals from camera trap data. We illustrate the application of the models proposed to a community of terrestrial mammals from a tropical moist forest at Barro Colorado Island (BCI), Panama

    Technical Note: Impact of nonlinearity on changing the a priori of trace gas profiles estimates from the Tropospheric Emission Spectrometer (TES)

    No full text
    International audienceNon-linear optimal estimates of atmospheric profiles from the Tropospheric Emission Spectrometer (TES) may contain a priori information that varies geographically, which is a confounding factor in the analysis and physical interpretation of an ensemble of profiles. A common strategy is to transform these profile estimates to a common prior using a linear operation thereby facilitating the interpretation of profile variability. However, this operation is dependent on the assumption of not worse than moderate non-linearity near the solution of the non-linear estimate. We examines the robustness of this assumption when exchanging the prior by comparing atmospheric retrievals from the Tropospheric Emission Spectrometer processed with a uniform prior with those processed with a variable prior and converted to a uniform prior following the non-linear retrieval. We find that linearly converting the prior following a non-linear retrieval is shown to have a minor effect on the results as compared to a non-linear retrieval using a uniform prior when compared to the expected total error, with less than 10% of the change in the prior ending up as unbiased fluctuations in the profile estimate results

    Identification of a nearby stellar association in the Hipparcos catalog: implications for recent, local star formation

    Get PDF
    The TW Hydrae Association (~55 pc from Earth) is the nearest known region of recent star formation. Based primarily on the Hipparcos catalog, we have now identified a group of 9 or 10 co-moving star systems at a common distance (~45 pc) from Earth that appear to comprise another, somewhat older, association (``the Tucanae Association''). Together with ages and motions recently determined for some nearby field stars, the existence of the Tucanae and TW Hydrae Associations suggests that the Sun is now close to a region that was the site of substantial star formation only 10-40 million years ago. The TW Hydrae Association represents a final chapter in the local star formation history.Comment: 5 pages incl figs and table
    • …
    corecore