research

Absolute timing of the Crab pulsar with the INTEGRAL/SPI telescope

Abstract

We have investigated the pulse shape evolution of the Crab pulsar emission in the hard X-ray domain of the electromagnetic spectrum. In particular, we have studied the alignment of the Crab pulsar phase profiles measured in the hard X-rays and in other wavebands. To obtain the hard X-ray pulse profiles, we have used six year (2003-2009, with a total exposure of about 4 Ms) of publicly available data of the SPI telescope on-board of the INTEGRAL observatory, folded with the pulsar time solution derived from the Jodrell Bank Crab Pulsar Monthly Ephemeris. We found that the main pulse in the hard X-ray 20-100 keV energy band is leading the radio one by 8.18±0.468.18\pm0.46 milliperiods in phase, or 275±15μs275\pm15 \mu s in time. Quoted errors represent only statistical uncertainties.Our systematic error is estimated to be 40μs\sim 40 \mu s and is mainly caused by the radio measurement uncertainties. In hard X-rays, the average distance between the main pulse and interpulse on the phase plane is 0.3989±0.00090.3989\pm0.0009. To compare our findings in hard X-rays with the soft 2-20 keV X-ray band, we have used data of quasi-simultaneous Crab observations with the PCA monitor on-board the Rossi X-Ray Timing Explorer (RXTE) mission. The time lag and the pulses separation values measured in the 3-20 keV band are 0.00933±0.000160.00933\pm0.00016 (corresponding to 310±6μs310\pm6 \mu s) and 0.40016±0.000280.40016\pm0.00028 parts of the cycle, respectively. While the pulse separation values measured in soft X-rays and hard X-rays agree, the time lags are statistically different. Additional analysis show that the delay between the radio and X-ray signals varies with energy in the 2 - 300 keV energy range. We explain such a behaviour as due to the superposition of two independent components responsible for the Crab pulsed emission in this energy band

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019