84 research outputs found

    Some Inhomogeneous Magnetized Viscous Fluid Cosmological Models with Varying Λ\Lambda

    Full text link
    Some cylindrically symmetric inhomogeneous viscous fluid cosmological models with electro-magnetic field are obtained. To get a solution a supplementary condition between metric potentials is used. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density. Without assumin g any {\it ad hoc} law, we obtain a cosmological constant as a decreasing function of time. The behaviour of the electro-magnetic field tensor together with some p hysical aspects of the model are also discussed.Comment: 17 pages, 1 figur

    Izvod kozmoloških modela V Bianchijeve vrste s volumnim trenjem i vremenski-ovisnim članom λ

    Get PDF
    Bianchi type V bulk viscous fluid cosmological models are investigated with dynamic cosmological term λ(t). Using a generation technique (Camci et al., 2001), it is shown that the Einstein\u27s field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. The cosmological constant is found to be a decreasing function of time, which is supported by results from recent type Ia supernovae observations. Some physical and geometrical aspects of the models are also discussed.Istražujemo kozmološke modele V-e Bianchijeve vrste s volumnim trenjem i dinamičnim kozmološkim članom Λ(t). Primjenom metode izvođenja (Camci et al., 2001) pokazujemo da se Einsteinove jednadžbe polja mogu riješiti za proizvoljnu funkciju kozmičke mjere. Postigli smo rješenja za posebne funkcije kozmičkih mjera. Nalazimo da je kozmološka konstanta opadajuća funkcija vremena, što je u skladu s nedavnim opažanjima supernova Ia. Raspravljamo također neka fizička svojstva modela

    Superconductivity in 2-2-3 system Y2Ba2Cu2O(8+delta)

    Get PDF
    Researchers synthesized a new high T(sub c) 2-2-3 superconductor Y2Ba2Cu3O(8+delta) by a special preparation technique and characterized it by ac-susceptibility measurements. Diamagnetism and Meissner effect sets in at low fields and superconducting transition onsets at 90 K. The systematic investigation of the real and imaginary components of ac-susceptibility as a function of temperature and applied ac magnetic field reveals that the magnetic behavior is that of a granular type superconductor

    Studies of structural, magnetic and dielectric properties of X-type Barium Zinc hexaferrite Ba2Zn2Fe28O46 powder prepared by combustion treatment method using ginger root extract as a green reducing agent

    Get PDF
    Various quantities of ginger (Zingiber officinale) root extract were used to prepare X-type Barium–Zinc hexaferrite with the chemical composition Ba2Zn2Fe28O46. The powders were prepared using a combustion treatment method, being pre-heated at 550 °C for 4 h with the ginger as a fuel, followed by final heating to 900 °C for 5 h and natural cooling to room temperature to obtain Ba2Zn2Fe28O46 hexagonal ferrite powder. The phase composition of heated powder samples was investigated by X-ray diffraction (XRD), indicating the formation of a mixture of X-type and hematite (α-Fe2O3). Up to 82.6%, X-ferrite was formed at 900 °C with 52.5 g of ginger root extract. Dielectric analysis of the prepared samples shows the frequency-dependent phenomena. All samples were hard magnets, with coercivity values (HC) between 262.2 and 318.3 kA m−1, and squareness ratios > 0.5. The sample prepared with 52.5 g ginger root extract possesses the highest value of saturation magnetisation (MS = 33.87 Am2 kg−1) in comparison with the other prepared samples. Therefore, ginger was shown to be a useful natural plant extract as a reducing fuel for the low-temperature synthesis of X-ferrites. The sample prepared with 35 g ginger root extract shows a broad loss tangent resonance peak between 10 kHz and 100 kHz, while other samples show loss tangent resonance peaks between 300 kHz and 2 MHz frequency range

    Studies of structural, magnetic and dielectric properties of X-type Barium Zinc hexaferrite Ba2Zn2Fe28O46 powder prepared by combustion treatment method using ginger root extract as a green reducing agent

    Get PDF
    Various quantities of ginger (Zingiber officinale) root extract were used to prepare X-type Barium–Zinc hexaferrite with the chemical composition Ba2Zn2Fe28O46. The powders were prepared using a combustion treatment method, being pre-heated at 550 °C for 4 h with the ginger as a fuel, followed by final heating to 900 °C for 5 h and natural cooling to room temperature to obtain Ba2Zn2Fe28O46 hexagonal ferrite powder. The phase composition of heated powder samples was investigated by X-ray diffraction (XRD), indicating the formation of a mixture of X-type and hematite (α-Fe2O3). Up to 82.6%, X-ferrite was formed at 900 °C with 52.5 g of ginger root extract. Dielectric analysis of the prepared samples shows the frequency-dependent phenomena. All samples were hard magnets, with coercivity values (HC) between 262.2 and 318.3 kA m−1, and squareness ratios > 0.5. The sample prepared with 52.5 g ginger root extract possesses the highest value of saturation magnetisation (MS = 33.87 Am2 kg−1) in comparison with the other prepared samples. Therefore, ginger was shown to be a useful natural plant extract as a reducing fuel for the low-temperature synthesis of X-ferrites. The sample prepared with 35 g ginger root extract shows a broad loss tangent resonance peak between 10 kHz and 100 kHz, while other samples show loss tangent resonance peaks between 300 kHz and 2 MHz frequency range.publishe

    Design and development of Ga-substituted Z-type hexaferrites for microwave absorber applications: Mössbauer, static and dynamic properties

    Get PDF
    Gallium substituted Z-type Sr3GaxCo2-xFe24O41 (x = 0.0–2.0 in steps of 0.4) hexaferrites were synthesised by the sol-gel auto-combustion process, and sintered at 1150 °C. The structural, morphology, magnetic, Mössbauer, dielectric and microwave absorption properties were examined. XRD results of x = 0.0, 0.4, 0.8, and 1.2 samples show the formation of a single Z-type hexagonal phase. The samples x = 1.6 and 2.0 show the formation of Z and M phases. Hysteresis loops analysis suggest that samples x < 1.6 possess a soft magnetic nature, while the samples x = 1.6 and 2.0 show a hard ferrite characteristics. All samples possess multi-domain microstructures. The composition x = 0.4 [maximum MS = 97.94 Am2kg−1] was fitted with seven sextets (Fe3+) and a paramagnetic doublet-A (Fe3+), while beyond x ≥ 0.8 two more doublets (Fe2+) were observed along with seven sextets in Mössbauer spectra. The maximum values of Fe2+ ions (1.26%) and relative area of paramagnetic doublets (1.91%) were observed for x = 1.6 composition, which is also responsible for the lowest value of MS (69.99 Am2kg−1) for this composition. The average hyperfine magnetic field was found to decrease, whereas average quadrupole splitting was found to increase, with Ga-substitution. The substitution of Ga ions enhanced permeability, dielectric constant, magnetic loss and dielectric loss, in a non-linear fashion. The reflection loss was maximum at lower frequencies for samples x = 0.0 and 0.8, and decreases with frequency. Sample x = 0.8 has maximum reflection loss of −12.44 dB at 8 GHz, a measured thickness of 3 mm, and a bandwidth of −10 dB at 1.18 GHz. The observed absorption has been discussed with the help of the input impedance matching mechanism and quarter wavelength mechanism. The observed coercivity in different samples also influenced microwave absorption which demonstrated potenial in microwave absorber applications

    A study of the gravitational wave form from pulsars II

    Full text link
    We present analytical and numerical studies of the Fourier transform (FT) of the gravitational wave (GW) signal from a pulsar, taking into account the rotation and orbital motion of the Earth. We also briefly discuss the Zak-Gelfand Integral Transform. The Zak-Gelfand Integral Transform that arises in our analytic approach has also been useful for Schrodinger operators in periodic potentials in condensed matter physics (Bloch wave functions).Comment: 6 pages, Sparkler talk given at the Amaldi Conference on Gravitational waves, July 10th, 2001. Submitted to Classical and Quantum Gravit
    corecore