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Abstract

Various quantities ofinger (Zingiber officinale) root extract were used to aee X-
type Barium-Zinc hexaferrite with the chemical camspion BaZn,FesO4 The powders
were prepared using a combustion treatment metiedg pre-heated at 550 °C for 4 h. with
theginger as a fuel, followed by final heating to 900 °C ¥oh. and natural cooling to room
temperature to obtain BanFesO46 hexagonal ferrite powder. The phase composition of
heated powder samples was investigated by X-rajradifon (XRD), indicating the
formation of a mixture of X-type and hematite-Fe03). Up to 82.6 wi%, X-ferrite was
formed at 900 °C with 52.5 g @finger root extract. Dielectric analysis of the prepared
samples shows the frequency-dependent phenomehaarples were hard magnets, with
coercivity valuesHic) between 262.2-318.3 kA and squareness ratios > 0.5. The sample
prepared with 52.5 gginger root extract possesses the highest value of satura
magnetization Nls = 33.87 Anf kg') in comparison with the other prepared samples.
Therefore,ginger was shown to be a useful natural plant extract asducing fuel for the
low-temperature synthesis of X-ferrites. The sampkpared with 35 g ginger root extract
shows a broad resonance peak between 10 kHz tokH@0 while other samples show
resonance between 500 kHz to 1 MHz frequency raAgéow frequencies (100 Hz to 2
MHz), relative permittivity was constant betweearisl 12 above 800 kHz for all X- ferrites.



Keywords: Green synthesis, X-type hexafermi@ger root extract, magnetic properties, and

dielectric properties.

1. Introduction

Currently, sustainable fresh approaches that usengchemistry to improve and
protect our environment are the main concerns imymareas of research. Preparation of
novel magnetic materials has become very attractive to their potential applications in
radar absorbing materials (RAM), electronics [1, lyh-density magnetic recording [3-6],
biocompatible magnetic nanoparticles for canceattnent [7-10] and magnetic resonance
imaging (MRI) [11, 12]. The development of biodedphle and cost-efficient synthesis
methods of nanomaterial remains a scientific chgke Nanotechnology is also important to
defeat the environmental issues caused by chemubastries such as oils [13], organic dyes
[14], mercury, and wastewater. Common nanopartsgiethesis using chemical methods
often involves harmful chemicals and solvents whiohy affect the human body and
environment. Hence, biological methods using natptants or plant extracts for the
preparation of nanoparticles can be used as impostabstitutes for chemical methods [15-
18].

There are a large number of methods used for thihagis of nanoparticles such
as co-precipitation [19], sol-gel [20, 21], microdgision [22] and standard ceramic
methods [23, 24], but these methods are often matanmentally friendly as reagents
and solvents used in these chemical processesecllarbmable or toxic. To overcome
this, green synthesis of nanoparticles using eeodity materials like plant extracts [25]
microorganisms such dsingi, yeast [26] and bacteria [27] is a low camhd time
reducing alternative. Different plants, roots, lesvfruits, fruit peel, seeds, and their

extracts have been used for the preparation of etegmanomaterials [25, 28-30].

Ginger (Zingiber officinale) is a flowering plant and itsot; rhizome is used as a
spice [31]. An active constitute called gingeroitiis responsible for most of the health
benefits from ginger [32]Ginger is the world’s most cultivated herb from its ongo
the present having good historic and medicinale/as a digestive aid, aphrodisiac, etc.,
over thousands of years [33].Ginger remains an important ingredient of many
traditional herbal remedies, as it has a historymufltiple uses [34]. Many anti-
inflammatory and antioxidant compounds such asaieips beta-carotene, pantothenic

acid, curcumin, caffeic acid, and salicylate arespnt in it. Also, active compounds like



shogaol, zerumbone, terpenoids, flavonoids, payaalodl zingerone present in ginger

provide many health benefits [35].

Ginger can be used as a reducing agent for the preparafimanomaterials as it
possesses good antioxidant properties [36, 37, IB8}as been reported that antioxidant
properties are associated with the reducing povverodogically active compounds [39, 40],

useful during combustion synthesis.

Antioxidant activity and components vary greatlydadepend on the extracting

solvent and its concentration [41}-n-this-were-used-waterto-produgingerroot-extraet,
adding-to-the-sustainability-of the-proecess. In parison with other work, our approach is an

appropriate, inexpensive, time reducing and eamntlly route for the green synthesis of
barium-zinc X-type hexaferrite. This procedure asier compared to earlier reported, being
prepared from metal nitrates in water. To the loésiur knowledge, it is the first time that

barium-zinc hexaferrite (along with some hematiteas been formed at 900 °C by using

ginger extract as a reducing agent in reactions.

In the present study, we have used different weighginger root to prepare X-type
hexaferrites (B&n,FexsO46) by combustion treatment method and investigatedeffect of
the different amounts of ginger root on phase faionaas well as on magnetic and dielectric

properties.

2. Experimental Procedure
2.1Ginger extract preparation

Freshginger root (~ 200 g) was taken from the market and @ddawith distilled
water. Theginger root was first peeled before cutting and then boiled4forminutes in 200
ml distilled water to geginger root extract. The resulting extract solution witeried using a

filter paper.

2.2 X-type ferrite synthesis
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Fig. 1. Flowchart for the preparation of X-type hexaferBaZn,FesO4 powder.

Stoichiometric quantities of barium nitrate Ba(j&> 99.0% pure, Sigma—Aldrich),
zinc nitrate Zn(N@),.6H,O (> 98.0% pure, Sigma—Aldrich) and ferric nitrate F&gh.9H,O
(> 98.0%, pure, Sigma—Aldrich) were dissolved oneohg in a total solution of 100 ml of
ginger extract. Precursor solutions were made with 0.(5,135.0, 52.5, and 70.0 g giihger
root and in all cases a total of 51.79 g of me#disswere added. During this process, the
solution was continuously stirred using a magnstiicer. The prepared mixture was heated
at 90 °C in an oil bath to obtain a gel. The oladigel was then dried in a muffle furnace at
100 °C for 20 h., to remove water. The resultingdipowder was ground in a mortar and
pestle and then preheated at 550 °C for 4 h. Télkegated powder was finally heated to 900

°C for 5 h., in a muffle furnace and allowed to kcnaturally to room temperature to obtain



the BaZn,FesO46 hexaferrite powder. Fig.1 shows the flowchart thoe preparation of the
X-type hexaferrite B&Zn,FesOs powder. Heated samples were coded as Sample (A),
Sample (B), Sample (C), Sample (D) and Sample (@E)tlie BaZn,FesO4 hexaferrite
prepared with 17.5, 35.0, 52.5, 70.0 and 0.0 gjrader root extract, respectively.

2.3 Characterisation

A FTIR spectrometer (Bruker Tensor 27 Model) wasduso record infrared (IR)
spectra of all synthesised samples over the rahg@a®d—400 crit at room temperature. KBr
pellet method was used to record IR spectra. Xdiffixaction (XRD) technique was used to
identify the crystalline phase formation, usingragaku X-ray diffractometer with Cu - K
radiation { = 1.5406 A), and the62scanning range was 20°- 80° with equal steps @#°0.
The morphology of all samples was investigatedgisitNano Nova 450 Field Emission Gun
Scanning Electron Microscope (FEG-SEM). The magneysteresis loops were recorded at
room temperature under an applied field of +1.0sihg a vibrating sample magnetometer
(EG & G Princeton Applied Research instrument, Me0) The low-frequency dielectric
measurements were carried out at room temperatigeaofrequency range of 100 Hz to 2
MHz using a Precision LCR meter (Agilent E4980AheTpellets of sintered ferrite powder
were made using a hydraulic press for low-frequetieyectric measurements and density
measurements.

3. Results and discussions

3.1 FTIR Analysis
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Fig. 2. FTIR spectra of X-type Ban,Fes0O46hexaferrite samples heated at 900 °C for 5 h.,
prepared with and without the presence of differegight ratios ofjinger root extract: (a)
Sample (A), (b) Sample (B), (c) Sample (C), (d) pEn{D), and (e) Sample (E).

Fig. 2 shows the FTIR spectra of Ba,Fe;sOs6 powder synthesised with and without the
presence ofjinger root extract heated at 900 °C for 5 h (Sample JA-Ehe absorption
bands in the powder at 584 ¢nand 434 cnf are assigned to the tetrahedrad) (and
octahedral ;) metal-oxygen bond vibrations of the crystal tatiand are characteristic of
hexagonal ferrites [42]. Absorption bands in thege 434-439ci (v,) are assigned to the
Fe-O stretching of Fe{)while, the bands in the range 580-585cfw) are assigned to the
Fe-O stretching of Fe-£}43]. All heated samples show a small absorptiamdat ~1632 cm

! indicating the O-H stretching vibrations whichyrize due to the polyol [44]. However, the
sample prepared without ginger root extract showsoad (strong) absorption peak between
3300-3600 cnl, which is due to the stretching vibration of arHOsond [45, 46], and is
typical of water. The fact that this is absent e tsamples witlginger suggests that the
sample withoutginger (Sample (E), Fig. 2e) is much more hygroscopic has absorbed
atmospheric moisture much more rapidly after caplin

3.2 XRD analysis

Intensity (arb. unit)




Fig. 3. XRD patterns of X-type Ban,FegO4s hexaferrite samples heated at 900 °C for 5 h.,
prepared with and without the presence of differegight ratios ofjinger root extract: (a)
Sample (A), (b) Sample (B), (c) Sample (C), (d) D), and (e) Sample (E).

XRD patterns of X-type Ban,FesOss hexaferrite samples were indexed using the
standard patterns for X-type (Bée,FesOs6) hexagonal crystals (JCPDS # 01-073-2034),
and are shown in Fig. 3. XRD analysis of the saspbdeepared in the presence of different
weight ratios ofginger root extract and heated at 900 °C for 5 h. revetide formation of X-
type ferrite and hematiten{Fe,O3) (JCPDS # 04-015-9569) as a minor secondary phase.
However, the sample prepared withgiriger root extract (Sample (E)) shows the formation
of a mixture of phases: 72.2% of M-type ferrite F8a0O19) (JCPDS # 84-0757), only 22.2%
X-type, and 5.6% hematite. Therefore, the addibbrihe ginger extract has enabled the
formation of a single hexaferrite phase (X-typepdbw temperature of only 900 °C, with
non-magnetia-Fe,0O3; as a minor secondary phase. The phase composélaas are given
in Table 1.

It can be seen from Fig. 3 that the sample witlb BRweight ofginger root extract
(Sample (C), Fig. 3c) contained the lowest amodritemnatite compared to the others, with
82.61 % X ferrite, while the quantity of hematitecieased again when the weight ratio of
ginger root extract increased to 70 g (Sample (D), Fid), 3ielding 75.0 % X ferrite.
Therefore, the XRD patterns confirmed that 52.5ejgt ofginger root extract (Sample (C),
Fig. 3c) was the optimum for the synthesis of XetyBaZn,Fes04¢) hexaferrites.

The variation of lattice constants and unit celluvne with different weight ratios of
ginger root extract is shown in Fig. 4 and Table 1. Theerage crystallite size was

investigated from the most intense peak usingdheviing Scherrer formula [47].

KA
D(xrd) = BCOSQ (1)

WhereK is a dimensionless shape factor and has a valuet alb 0.9 which varies with the
actual shape of the crystallitejs the X-ray wavelength (1.5406 A):is the angle of Bragg
diffraction, andp is the full width at half the maximum intensityh& obtained structural
parameters are listed in Table 1. The crystallize sf all samples, heated at 900 °C for 5 h.

varies in the range of 27-37 nm.



The unit cell volume was calculated using the fwlltg equation.
V = a’c sin 120° 2)
Where V' is the volume of the unit cell and’‘and ‘c’ are the lattice constants.

The crystallite size was ~37 nm withagibhger extract, and ~30 nm in all cases with
ginger extract, suggesting that the reducing agent had effiect of slightly lowering
crystallite size in the ferrites produced. Simyathe lattice parameters and cell volume were

larger, and similar, for all samples produced withiger extract compared to that without.
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Fig. 4. Variation of Lattice constants,(c) and unit cell volume\() of BaZn,Feg046
hexaferrite samples prepared withgiriger root extract and with different weight ratios of

ginger root extract heated at 900 °C for 5 h. (Sampl@®ji-

Table 1. Structural parameters of X-type Ba,Fe 046 hexaferrite samples prepared
without and with the different weight ratio ginger root extract and heated at 900 °C for 5 h.

Lattice . % of % of
parameters Cell Crystalhtes % of a- M-
Code volume size Dyq FWHM | X- Fe,0 phase
a(d) | c V (R (nm) (deg.) | phase 3
(x0.02) (x0.2) (£5) (x0.2) (x0.1) (+0.1) | (x0.1)
Sample (A) | 5.889 86.303| 2592.03 29.30 0.2964 58.83 41167
Sample (B)| 5.889 86.308| 2592.18 31.34 0.2771 62.50 37,50 °
Sample (C)| 5.888 | 86.310 2591.31 30.15 0.2880 82.61 17(39 ~
Sample (B)| 5.889 86.310| 2592.24 27.91 0.3111 75.00 25/00 -
Sample (E)| 5.760 82.10 2358.88 36.95 0.2350 22.22 5.56 72122




The values of Bulk densityd§) and X-ray densitydx) were calculated using the

following equations [48].

dp = nrZh ®)
3M
Dx = NaZc (4)

Wherem is mass of pellet; is a radius of pellety is the height (thickness) of pellé{l is
molecular weight,a and c are lattice constants, ard is Avogadro’s number (6.02 x
107%mole).

The value of porosity for all samples is calculaiethg the following equation.

P:(l-dD—i)XIOO% (5)

The calculated values of X-ray, bulk density andopiy of all the samples heated at
900 °C for 5 h. are shown in Table 2. The valubulk density varies in the range of 1.90 -
3.30 g/cni (Table 2). The sample prepared with 52.%jiager root extract (Fig. 3c), that
contained the most X-ferrite phase, also had th@mum value of porosity and maximum
value of bulk density. However, as these pelleteevamly heated to 900 °C, hence they are
very poorly sintered and are not close to the marinlensity possible (5.313 g/@mThe
calculated X-ray densities were higher, at ~ 450 (see Table 2).

Table 2. The bulk density, X-ray density, and the porositBa,Zn,Fes0,4¢ hexaferrite
samples heated at 900 °C for 5 h.

Bulk density dg X-ray density Dy Porosity P

Code (g/cn?) (g/cn) (%)
(+0.01) (£ 0.02) (+0.1)
Sample (A) 1.92 4.502 57.40
Sample (B) 3.16 4.502 29.79
Sample (C) 3.26 4.504 27.60
Sample (D) 2.87 4.502 36.25

Fig. 5 shows the variation in bulk densitg), X-ray density D) and porosity R)
with the different weight ratios @inger root extract for the samples heated at 900 °G for
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3.3 Surface Morphology
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Fig. 6. SEM images of nge rs h.,EEb
with the presence of different weight ratioggoiger root extract: (a) Sample (A), (b) Sample
(B), (c) Sample (C), (d) Sample (D).



Fig.6 shows the SEM micrographs for all the samp&smple (A-D)) showing the grain
morphology of prepared hexaferrites. It is obserfredn micrographs that the grains are
agglomerated and are irregular in shape. As thghweatio ofginger root extract increases,
porosity decreases, and agglomeration increasessdimple prepared in presence of 17.5 g
ginger root extract ( Sample (A), Fig. 6a) possesses@p structure and it also possesses a
high value of porosity (57.40 %) and low value afkbdensity (1.92 g/ci) compared to all
other samples.

3.4 Magnetic properties

The hysteresis loops of BanFesOss samples prepared in the presenceagiofer
root extract, heated at 900 °C were recorded o®k&l nder an applied field of £ 1.0 T and
shown in Fig. 7. The different magnetic paramegersh as saturation magnetisatidms),
remanent magnetisatiorM(), coercivity Hc), and squareness ratid{Ms) of prepared

hexaferrites are calculated from the M-H loops Hiair values are listed in Table 3.
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extract: (a) Sample (A), (b) Sample (B), (c) Saan(t), (d) Sample (D).

Table 3. Magnetic parameters of B&nFegOss hexaferrites prepared with the different

weight ratios ofjinger root extract heated at 900 °C for 5 h.



The values of saturation magnetisatiokls\ and remanent magnetisatio,)

Sr Remanence Saturation Squareness Coercivit H
No Code Magnetization =~ Magnetization ratio He (T) y (KA ;1_1) Ha.(Oe)
: M, (Am?*kg?®)  Ms(Am?kg?) M, /Mg ¢
1 Sample (A) 8.75 17.08 0.5122 0.40 149.711881.25
2 Sample (B) 14.75 28.86 0.5110 0.35 156.731969.47
3 Sample (C) 17.66 33.87 0.5214 0.38 147.171849.34
4 Sample (D) 11.92 20.92 0.5698 0.33 108.101358.38

increase as the weight ratio gihger root extract increases except for the sample peepa
with 70.0 gginger root extract (Sample (D)), that had a lower X4itercontent than that with
52.5 g, as shown in Table 3. The value of coergiliéts in the range of 262.6-318.3 kA'm
(0.33-0.40 T =3300-4000 Oe) in all cases, whinbvmss that the prepared samples belong to
the family of hard ferrites [49], as would be exjgecfor BaZn,FegOss. The variation of
saturation magnetisatiorMg), remanent magnetisatioMy) and coercivity Id;) with the

different weight ratios ofjinger root extract are shown in Fig. 8 (a).

In the present study, the sample prepared with 8iBger root extract (Sample (C))
possesses the highest value of saturation magtiti®ls = 33.87 Anf kg™ or emu/g) in
comparison with the remaining prepared sampleg, ithaecause this sample exhibits the
maximum amount of X-phase (79.16 %). The variaiioiMs is matching with X-phase
presented in the sample as shown in Fig. 8 (b)is Mg value (33.87 Arhkg™ or emu/g) is
particularly low in comparison with the reportedximum value of saturation magnetisation
(Ms = 73.1 Anf kg' or emu/g) [50]. The low value ofls is partially attributed to the
presence of the antiferromagnetic phase of hemétife39 % ofa- FeOs) [51, 52], as
confirmed by XRD analysis (Fig. 33s a sample containing only 82.61 wt % X ferriteuldo
be expected to haveMs value of 57.75 Armkg™. The fact that the value here is still only
around 2/3 of this value could be explained by ltwe synthesis temperature used here —
magnetisation is known to increase as synthesiergig temperature increases, and the low
crystallite size seen in these samples is wellvbdlte typical maximum magnetic domain
sizes reported for hexaferrites of between Op5¥l[2]. The squareness ratib{Ms) is also
calculated from the values M; andMsand their values are tabulated in Table 3. Prelyous
it has been reported that the squareness ratiexaférrite samples at or above 0.5 shows the

material possesses a single magnetic domain aoeviieb shows the formation of a multi-



domain structure. In the present study, the sqesertio of all the samples is in the range

of 0.510 - 0.570 (Table 3) showing that all the pba®s possess a single domain structure.
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3.5 Dielectric properties

200

(€)

150 -

'—\

o

o
1

Real dielectric constant
ol
o
1

100 1k 10k 100k 1M
Frequency (Hz)

Fig. 9.Variation in real dielectric constard’ of BaZn,FesO4chexaferrite samples heated
at 900 °C for 5 h., prepared with the differentgtiratio ofginger root extract: (a) Sample
(A), (b) Sample (B), (c) Sample (C), (d) Sample.(D)

It is observed from Fig. 9 that at low-frequenclye tdielectric constant of the samples
prepared with 35 gjinger root extract (Sample (B)) decreases rapidly angragrhes a
constant above 1 MHz, while the other samples ($a#y), (C) and (D)) show lower initial
permittivity, and resonance peaks at around 10430. Khis decrease in dielectric constant
with frequency is a normal behaviour of most fenagnetic materials and has also been
observed by several other researchers [53-55]. @dhsviour of dielectric dispersion can be
explained based on Koop’s phenomenological theatyich is based on the Maxwell-
Wagner interfacial polarisation model [56]. Accarglito this model, the dielectric medium of
ferrite consists of two layers. The first layerfaifly well- conducting boundaries is separated
by the second layer of relatively poor conductirguitdaries. The first layer is strongly
effective at higher frequencies, while the secayet is dominant at lower frequencies. The
free electrons reach the grain boundaries througgping [57] and ‘pile-up’ at the grain
boundaries if the grain boundaries’ resistanceigd enough and, hence, produce induced
polarisation. In ferrites, the polarisation is m#ar process to that of the conduction process.

The free electrons in a dielectric medium neednéefitime to line up their axes in the



direction of the applied field. If the frequencytbk applied field is increased, free electrons
cannot align with the applied field at a certainnp@nd hence cannot follow the changes in
the applied field over a certain frequency rang@].[AAs a result, the probability of free
electrons reaching grain boundaries is deceasedhanétee electron polarisation virtually
does not contribute to the polarisation that desgeahe dielectric constant [56, 59]. At 1

MHz and above, all of the X ferrites have similarmittivity values of ~10-12.
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hexaferrite samples heated at 900 °C for 5 h.,gwezpwith the different weight ratio of
ginger root extract: (a) Sample (A), (b) Sample (B),%a@mple (C), (d) Sample (D).

Fig.10 shows the variation of loss tangdan @) of all the prepared samples (Sample (A-D))
with frequency at room temperature. The value efltangent depends on different factors
such as Fé& content, structural homogeneity, stoichiometry arafpreparation time and
heating temperature [60]. The value of loss tangecteases with increasing frequency, that
is because beyond a certain frequency limit hopfieguency of charge between®*Fand
Fe* cannot follow the frequency of the applied elecfield. The sample prepared with 35 g
ginger root extract (Sample (B)) shows a broadnmasoe peak between 10 kHz to 100 kHz,

while other samples show resonance between 50kl MHz frequency range.
AC conductivity 649 of the samples was calculated by the formula;[61]

Cac— 27[f 508” (6)
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Fig. 11.AC conductivity of BaZn,FesO4shexaferrite samples heated at 900 °C for 5 h.,
prepared with the different weight ratiogghger root extract: (a) Sample (A), (b) Sample
(B), (c) Sample (C), (d) Sample (D).

The variation of ac conductivity of all the hexaifter samples (Sample (A-D)) with frequency
(100 Hz - 2 MHz) at room temperature is shown ig.Fil. It can be observed that ac
conductivity increases with the increase of freqyenwhich is because increment in

frequency increases the hopping frequency of tlegehcarriers between ¥and F&".

3.5.1 Frequency-dependent impedance
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Fig. 12.Variation of the real part of impedance (Z') withquency for X-type B&Zn,FesO4s

hexaferrite samples heated at 900 °C for 5 h.,gwezpwith the different weight ratio of
ginger root extract: (a) Sample (A), (b) Sample (B),%ample (C), (d) Sample (D).

The real part of impedance (Z') and complex paitrgfedance (Z") as a function of

applied field frequency in the range of 10 Hz teIBRz for X-type, BaZn,FesO46 hexaferrite

samples heated at 900 °C for 5 h. measured at teoperature are shown in Fig. 12 and

Fig. 13 respectively.
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Fig. 13.Variation of the complex part of impedance (Z#hirequency for X-type,

BaxZn,Fexs0O46 samples heated at 900 °C for 5 h., prepared wéldifferent weight ratio of
ginger root extract: (a) Sample (A), (b) Sample (B),%ample (C), (d) Sample (D).

It can be seen from Fig. 12 and Fig. 13 that tla¢ part of impedance (Z') and complex part
of impedance (Z") for all different weight rati@$ ginger root extract decreases fast as
frequency increases. Their values become almositaonbeyond 300 Hz frequency and

approach to nearly zero, that shows no dependdncyamd Z" on frequency.
3.5.2 Electric Modulus analysis

Analysis of electric modulus is important to undansl the various parameters of electrical
transport performance such as the rate of ion Imgppind conductivity relaxation time

contribution to the conductivity of the preparecé&ierrite material [62].
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Fig. 14 (a) shows the variation of the real parthef electric modulus (M’) of samples heated
at 900 °C as a function of frequency. It can bseoled from Fig. 14 (a) that at low
frequency, the value of real electric modulus (bf)all samples prepared in presence of
ginger root extract (Sample (A-D)) is low and a tiigh-frequency region, it increases very
fast. When the electric field is applied, it deaesmthe restoring force between the charge
carriers, which is responsible for the high validioat the high-frequency region [63]. The
maximum value of real modulus (M'~0.12 at 2 MHzplxserved in the sample prepared with
35.0 gginger extract.

The imaginary part of the electric modulus (M"y fll samples heated at 900 °C
(Sample (A-D)) is shown in Fig. 14 (b). The presgraph explains the brief information
about the charge transport mechanism, such asypanacs, conductivity relaxation and
electrical transport mechanism as a function offteguency [62]. The maximum value (M"
~0.075 at 2 MHz) is observed in the sample prepaidu52.5 g ginger root extract (Sample
(C)). The relaxation peak is observed around 1 Midthe sample prepared with 35.0 g
ginger root extract (Sample (B)) due to the mobility obolpe carriers. Below the relaxation
peak, the charge carriers are mobile and aboveelagation peak, the charge carriers are

immobile, which confined to a potential well [64].

Cole-Cole type plots provide information about trains, grains boundary effects;
are plotted and shown in Fig. 15. The Cole-Colé plpe (Nyquist plot) of electric modulus
analysis is more helpful than impedance analysisv@sus Z'). This analysis accurately
separates the relaxation effects from grain andngb@mundary in ferrite material. The
imaginary part of impedance (Z") gives the relaratlynamics from largest resistance of the
material, while, the imaginary part of the modu(i#') gives the smallest capacitance (i.e.
the highly conductive part) of the material [65].can be observed from Fig. 15 that all
samples (Sample (A-D)) show semicircle arc in twe-frequency region attributed to the
grain resistance [66]. The sample prepared with §&jinger root extract shows semicircle at
the low-frequency region, that indicates the rel@xaphenomena with different relaxation
time (r), associated with each relaxation. The capacitaatees can be calculated at the

maximum frequencyffay using the following relation [67]:
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Conclusions

X-type Barium zinc hexaferrite Ban,FegOss powder has been successfully
synthesized using the combustion treatment meth®@@&°C for 5 h. in presence of different
weight ratios ofjinger root. From XRD analysis it has been found thatgample with 52.5
g ginger root, heated at 900 °C contained less impuritigevhatite peak (17.39 %) compared
to other samples heated at 900 °C. The sample n@epaith 52.5 gginger root extract
possesses the highest value of saturation maghetizils = 33.87 Anfkg™) in comparison
with the other prepared samples, and all were Farttes. At low frequencies (>2 MHz),
relative permittivity was constant between 5 andth@ve 800 kHz.
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Highlights of the work

The effect of the different amounts of ginger regtract on phase formation, as well
as on magnetic and dielectric properties ofdBaFesO45has been investigated.

Barium-zinc hexaferrite (along with some hemathteys been formed at 900 °C by
usingginger extract as a reducing agent in reactions.

Prepared X-ferrites were hard magnets, with cogycixalues H¢) between 108-157

kA m™, and squareness ratios > 0.5.

52.5 gginger root gave the highest saturation magnetisation8@B3AnT kg,
showing it to be a useful natural plant extractaaseducing fuel for the low

temperature synthesis of  X-ferrites.

35 g ginger gave a broad resonance peak at 10 W9 kHz, while others showed
resonance at 500 kHz - 1 MHz.

Low frequency relative permittivity was between 5-dt 800 kHz — 2 MHz for all X

ferrites.
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