2,589 research outputs found

    Model AI Assignments 2018

    Full text link
    The Model AI Assignments session seeks to gather and disseminate the best assignment designs of the Artificial Intelligence (AI) Education community. Recognizing that assignments form the core of student learning experience, we here present abstracts of seven AI assignments from the 2018 session that are easily adoptable, playfully engaging, and flexible for a variety of instructor needs. Assignment specifications and supporting resources may be found at http://modelai.gettysburg.edu

    Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential In Vitro.

    Get PDF
    Cardiac progenitor cells (CPCs) have rapidly advanced to clinical trials, yet little is known regarding their interaction with the microenvironment. Signaling cues present in the microenvironment change with development and disease. This work aims to assess the influence of two distinct signaling moieties on CPCs: cyclic biaxial strain and extracellular matrix. We evaluate four endpoints for improving CPC therapy: paracrine signaling, proliferation, connexin43 expression, and alignment. Vascular endothelial growth factor A (about 900 pg/mL) was secreted by CPCs cultured on fibronectin and collagen I. The application of mechanical strain increased vascular endothelial growth factor A secretion 2-4-fold for CPCs cultured on poly-L-lysine, laminin, or a naturally derived cardiac extracellular matrix. CPC proliferation was at least 25% higher on fibronectin than that on other matrices, especially for lower strain magnitudes. At 5% strain, connexin43 expression was highest on fibronectin. With increasing strain magnitude, connexin43 expression decreased by as much as 60% in CPCs cultured on collagen I and a naturally derived cardiac extracellular matrix. Cyclic mechanical strain induced the strongest CPC alignment when cultured on fibronectin or collagen I. This study demonstrates that culturing CPCs on fibronectin with 5% strain magnitude is optimal for their vascular endothelial growth factor A secretion, proliferation, connexin43 expression, and alignment

    Predicting Maximal Oxygen Uptake Using the 3-Minute All-Out Test in High-Intensity Functional Training Athletes

    Get PDF
    Maximal oxygen uptake (VO2max) and critical speed (CS) are key fatigue-related measurements that demonstrate a relationship to one another and are indicative of athletic endurance performance. This is especially true for those that participate in competitive fitness events. However, the accessibility to a metabolic analyzer to accurately measure VO2max is expensive and time intensive, whereas CS may be measured in the field using a 3 minute all-out test (3MT). PURPOSE: Therefore, the purpose of this study was to examine the relationship between VO2max and CS in high-intensity functional training (HIFT) athletes. METHODS: Twenty-five male and female (age: 27.6 ± 4.5 years; height: 174.5 ± 18.3 cm; weight: 77.4 ± 14.8 kg; body fat: 15.7 ± 6.5%) HIFT athletes performed a 3MT as well as a graded exercise test with 48 h between measurements. True VO2max was determined using a square-wave supramaximal verification phase and CS was measured as the average speed of the last 30 s of the 3MT. RESULTS: A statistically significant and positive correlation was observed between relative VO2max and CS values (r = 0.819, p \u3c 0.001). Based on the significant correlation, a linear regression analysis was completed, including sex, in order to develop a VO2max prediction equation (VO2max (mL/kg/min) = 8.449(CS) + 4.387(F = 0, M = 1) + 14.683; standard error of the estimate = 3.34 mL/kg/min). Observed (47.71 ± 6.54 mL/kg/min) and predicted (47.71 ± 5.7 mL/kg/min) VO2max values were compared using a dependent t-test and no significant difference was displayed between the observed and predicted values (p = 1.000). The typical error, coefficient of variation, and intraclass correlation coefficient were 2.26 mL/kg/min, 4.90%, and 0.864, respectively. CONCLUSION: The positive and significant relationship between VO2max and CS suggests that the 3MT may be a practical alternative to predicting maximal oxygen uptake when time and access to a metabolic analyzer is limited

    Verification of Unstructured Grid Adaptation Components

    Get PDF
    Adaptive unstructured grid techniques have made limited impact on production analysis workflows where the control of discretization error is critical to obtaining reliable simulation results. Recent progress has matured a number of independent implementations of flow solvers, error estimation methods, and anisotropic grid adaptation mechanics. Known differences and previously unknown differences in grid adaptation components and their integrated processes are identified here for study. Unstructured grid adaptation tools are verified using analytic functions and the Code Comparison Principle. Three analytic functions with different smoothness properties are adapted to show the impact of smoothness on implementation differences. A scalar advection-diffusion problem with an analytic solution that models a boundary layer is adapted to test individual grid adaptation components. Laminar flow over a delta wing and turbulent flow over an ONERA M6 wing are verified with multiple, independent grid adaptation procedures to show consistent convergence to fine-grid forces and a moment. The scalar problems illustrate known differences in a grid adaptation component implementation and a previously unknown interaction between components. The wing adaptation cases in the current study document a clear improvement to existing grid adaptation procedures. The stage is set for the infusion of verified grid adaptation into production fluid flow simulations

    Intrinsic Epithelial Cells Repair the Kidney after Injury

    Get PDF
    SummaryUnderstanding the mechanisms of nephron repair is critical for the design of new therapeutic approaches to treat kidney disease. The kidney can repair after even a severe insult, but whether adult stem or progenitor cells contribute to epithelial renewal after injury and the cellular origin of regenerating cells remain controversial. Using genetic fate-mapping techniques, we generated transgenic mice in which 94%–95% of tubular epithelial cells, but no interstitial cells, were labeled with either β-galactosidase (lacZ) or red fluorescent protein (RFP). Two days after ischemia-reperfusion injury (IRI), 50.5% of outer medullary epithelial cells coexpress Ki67 and RFP, indicating that differentiated epithelial cells that survived injury undergo proliferative expansion. After repair was complete, 66.9% of epithelial cells had incorporated BrdU, compared to only 3.5% of cells in the uninjured kidney. Despite this extensive cell proliferation, no dilution of either cell-fate marker was observed after repair. These results indicate that regeneration by surviving tubular epithelial cells is the predominant mechanism of repair after ischemic tubular injury in the adult mammalian kidney

    N-Terminal Pro-B-Type Natriuretic Peptide and Microsize Myocardial Infarction Risk in the Reasons for Geographic and Racial Differences in Stroke Study

    Get PDF
    Background: N-terminal pro B-type peptide (NT-proBNP) has been associated with risk of myocardial infarction (MI), but less is known about the relationship between NT-proBNP and very small non ST-elevation MI, also known as microsize MI. These events are now routinely detectable with modern troponin assays and are emerging as a large proportion of all MI. Here, we sought to compare the association of NT-proBNP with risk of incident typical MI and microsize MI in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Methods: The REGARDS Study is a national cohort of 30,239 US community-dwelling black and white adults aged ≥ 45 years recruited from 2003 to 2007. Expert-adjudicated outcomes included incident typical MI (definite/probable MI with peak troponin ≥ 0.5 μg/L), incident microsize MI (definite/probable MI with peak troponin \u3c 0.5 μg/L), and incident fatal CHD. Using a case-cohort design, we estimated the hazard ratio of the outcomes as a function of baseline NT-proBNP. Competing risk analyses tested whether the associations of NT-proBNP differed between the risk of incident microsize MI and incident typical MI as well as if the association of NT-proBNP differed between incident non-fatal microsize MI and incident non-fatal typical MI, while accounting for incident fatal coronary heart disease (CHD) as well as heart failure (HF). Results: Over a median of 5 years of follow-up, there were 315 typical MI, 139 microsize MI, and 195 incident fatal CHD. NT-proBNP was independently and strongly associated with all CHD endpoints, with significantly greater risk observed for incident microsize MI, even after removing individuals with suspected HF prior to or coincident with their incident CHD event. Conclusion: NT-proBNP is associated with all MIs, but is a more powerful risk factor for microsize than typical MI

    Persistently Altered Brain Mitochondrial Bioenergetics After Apparently Successful Resuscitation From Cardiac Arrest

    Get PDF
    Background Although advances in cardiopulmonary resuscitation have improved survival from cardiac arrest (CA), neurologic injury persists and impaired mitochondrial bioenergetics may be critical for targeted neuroresuscitation. The authors sought to determine if excellent cardiopulmonary resuscitation and postresuscitation care and good traditional survival rates result in persistently disordered cerebral mitochondrial bioenergetics in a porcine pediatric model of asphyxia‐associated ventricular fibrillation CA. Methods and Results After 7 minutes of asphyxia, followed by ventricular fibrillation, 5 female 1‐month‐old swine (4 sham) received blood pressure–targeted care: titration of compression depth to systolic blood pressure of 90 mm Hg and vasopressor administration to a coronary perfusion pressure \u3e20 mm Hg. All animals received protocol‐based vasopressor support after return of spontaneous circulation for 4 hours before they were killed. The primary outcome was integrated mitochondrial electron transport system (ETS) function. CA animals displayed significantly decreased maximal, coupled oxidative phosphorylating respiration (OXPHOSCI+CII) in cortex (PPPPCI PCII PCIPCII PCI+CII), as well as a 30% reduction in citrate synthase activity (P\u3c0.04). Conclusions Mitochondria in both the cortex and hippocampus displayed significant alterations in respiratory function after CA despite excellent cardiopulmonary resuscitation and postresuscitation care in asphyxia‐associated ventricular fibrillation CA. Analysis of integrated ETS function identifies mitochondrial bioenergetic failure as a target for goal‐directed neuroresuscitation after CA. IACUC Protocol: IAC 13‐001023

    NASA's Robotic Lunar Lander Development Program

    Get PDF
    NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed
    corecore