2,266 research outputs found

    Clinical Study Limited Effects of Endurance or Interval Training on Visceral Adipose Tissue and Systemic Inflammation in Sedentary Middle-Aged Men

    Get PDF
    properly cited. Purpose. Limited data exists for the effects of sprint-interval training (SIT) and endurance training (ET) on total body composition, abdominal visceral adipose tissue, and plasma inflammation. Moreover, whether "active" or "passive" recovery in SIT provides a differential effect on these measures remains uncertain. Methods. Sedentary middle-aged men ( = 62; 49.5±5.8 y; 29.7±3.7 kg⋅m 2 ) underwent abdominal computed tomography, dual-energy X-ray absorptiometry, venepuncture, and exercise testing before and after the interventions, which included the following: 12 wks 3 d⋅wk −1 ET ( = 15; 50-60 min cycling; 80% HR max ), SIT (4-10 × 30 s sprint efforts) with passive (P-SIT; = 15) or active recovery (A-SIT; = 15); or nonexercise control condition (CON; = 14). Changes in cardiorespiratory fitness, whole-body and visceral fat mass, and plasma systemic inflammation were examined. Results. Compared to CON, significant increases in interpolated power output (P-SIT, < 0.001; ET, = 0.012; A-SIT, = 0.041) and test duration (P-SIT, = 0.001; ET, = 0.012; A-SIT, = 0.046) occurred after training. Final VO 2 consumption was increased after P-SIT only ( < 0.001). Despite >90% exercise compliance, there was no change in whole-body or visceral fat mass or plasma inflammation ( > 0.05). Conclusion. In sedentary middle-aged men, SIT was a time-effective alternative to ET in facilitating conditioning responses yet was ineffective in altering body composition and plasma inflammation, and compared to passive recovery, evidenced diminished conditioning responses when employing active recovery

    The Response to a Perturbation in the Reflection Amplitude

    Full text link
    We apply inverse scattering theory to calculate the functional derivative of the potential V(x)V(x) and wave function ψ(x,k)\psi(x,k) of a one-dimensional Schr\"odinger operator with respect to the reflection amplitude r(k)r(k).Comment: 16 pages, no figure

    Addendum Guidelines for the Prevention of Peanut Allergy in the United States: Report of the National Institute of Allergy and Infectious Diseasesâ Sponsored Expert Panel

    Full text link
    BackgroundFood allergy is an important public health problem because it affects children and adults, can be severe and even lifeâ threatening, and may be increasing in prevalence. Beginning in 2008, the National Institute of Allergy and Infectious Diseases, working with other organizations and advocacy groups, led the development of the first clinical guidelines for the diagnosis and management of food allergy. A recent landmark clinical trial and other emerging data suggest that peanut allergy can be prevented through introduction of peanutâ containing foods beginning in infancy.ObjectivesPrompted by these findings, along with 25 professional organizations, federal agencies, and patient advocacy groups, the National Institute of Allergy and Infectious Diseases facilitated development of addendum guidelines to specifically address the prevention of peanut allergy.ResultsThe addendum provides three separate guidelines for infants at various risk levels for the development of peanut allergy and is intended for use by a wide variety of health care providers. Topics addressed include the definition of risk categories, appropriate use of testing (specific IgE measurement, skin prick tests, and oral food challenges), and the timing and approaches for introduction of peanutâ containing foods in the health care provider’s office or at home. The addendum guidelines provide the background, rationale, and strength of evidence for each recommendation.ConclusionsGuidelines have been developed for early introduction of peanutâ containing foods into the diets of infants at various risk levels for peanut allergy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135514/1/pde13093_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135514/2/pde13093.pd

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Antisense PMO cocktails effectively skip dystrophin exons 45-55 in myotubes transdifferentiated from DMD patient fibroblasts

    Get PDF
    Antisense-mediated exon skipping has made significant progress as a therapeutic platform in recent years, especially in the case of Duchenne muscular dystrophy (DMD). Despite FDA approval of eteplirsen-the first-ever antisense drug clinically marketed for DMD-exon skipping therapy still faces the significant hurdles of limited applicability and unknown truncated protein function. In-frame exon skipping of dystrophin exons 45-55 represents a significant approach to treating DMD, as a large proportion of patients harbor mutations within this "hotspot" region. Additionally, patients harboring dystrophin exons 45-55 deletion mutations are reported to have exceptionally mild to asymptomatic phenotypes. Here, we demonstrate that a cocktail of phosphorodiamidate morpholino oligomers can effectively skip dystrophin exons 45-55 in vitro in myotubes transdifferentiated from DMD patient fibroblast cells. This is the first report of substantive exons 45-55 skipping in DMD patient cells. These findings help validate the use of transdifferentiated patient fibroblast cells as a suitable cell model for dystrophin exon skipping assays and further emphasize the feasibility of dystrophin exons 45-55 skipping in patients

    Identification of Novel Pathogenicity Loci in Clostridium perfringens Strains That Cause Avian Necrotic Enteritis

    Get PDF
    Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes ∼85 and ∼70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne

    De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of their phylogenetic position and unique characteristics of their biology and life cycle, ferns represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns combined with the absence of economically important species have been a barrier to the development of genomic resources. However, high throughput sequencing technologies are now being widely applied to non-model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the gametophyte transcriptome of bracken fern (<it>Pteridium aquilinum</it>) to develop genomic resources for evolutionary studies.</p> <p>Results</p> <p>681,722 quality and adapter trimmed reads totaling 254 Mbp were assembled <it>de novo </it>into 56,256 unique sequences (i.e. unigenes) with a mean length of 547.2 bp and a total assembly size of 30.8 Mbp with an average read-depth coverage of 7.0×. We estimate that 87% of the complete transcriptome has been sequenced and that all transcripts have been tagged. 61.8% of the unigenes had blastx hits in the NCBI nr protein database, representing 22,596 unique best hits. The longest open reading frame in 52.2% of the unigenes had positive domain matches in InterProScan searches. We assigned 46.2% of the unigenes with a GO functional annotation and 16.0% with an enzyme code annotation. Enzyme codes were used to retrieve and color KEGG pathway maps. A comparative genomics approach revealed a substantial proportion of genes expressed in bracken gametophytes to be shared across the genomes of <it>Arabidopsis</it>, <it>Selaginella </it>and <it>Physcomitrella</it>, and identified a substantial number of potentially novel fern genes. By comparing the list of <it>Arabidopsis </it>genes identified by blast with a list of gametophyte-specific <it>Arabidopsis </it>genes taken from the literature, we identified a set of potentially conserved gametophyte specific genes. We screened unigenes for repetitive sequences to identify 548 potentially-amplifiable simple sequence repeat loci and 689 expressed transposable elements.</p> <p>Conclusions</p> <p>This study is the first comprehensive transcriptome analysis for a fern and represents an important scientific resource for comparative evolutionary and functional genomics studies in land plants. We demonstrate the utility of high-throughput sequencing of a normalized cDNA library for <it>de novo </it>transcriptome characterization and gene discovery in a non-model plant.</p

    A Myo6 Mutation Destroys Coordination between the Myosin Heads, Revealing New Functions of Myosin VI in the Stereocilia of Mammalian Inner Ear Hair Cells

    Get PDF
    Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or ‘gating’ in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI–impaired hair cells, and ultimately leading to deafness
    corecore