17 research outputs found
Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomycescerevisiae
SWR1-Com, which is responsible for depositing H2A.Z into chromatin, shares four subunits with the NuA4 histone acetyltransferase complex. This overlap in composition led us to test whether H2A.Z was a substrate of NuA4 in vitro and in vivo. The N-terminal tail of H2A.Z was acetylated in vivo at multiple sites by a combination of NuA4 and SAGA. H2A.Z acetylation was also dependent on SWR1-Com, causing H2A.Z to be efficiently acetylated only when incorporated in chromatin. Unacetylatable H2A.Z mutants were, like wild-type H2A.Z, enriched at heterochromatin boundaries, but were unable to block spreading of heterochromatin. A mutant version of H2A.Z that could not be acetylated, in combination with a mutation in a nonessential gene in the NuA4 complex, caused a pronounced decrease in growth rate. This H2A.Z mutation was lethal in combination with a mutant version of histone H4 that could not be acetylated by NuA4. Taken together, these results show a role for H2A.Z acetylation in restricting silent chromatin, and reveal that acetylation of H2A.Z and H4 can contribute to a common function essential to life
Recommended from our members
Eri1 regulates microRNA homeostasis and mouse lymphocyte development and antiviral function.
Natural killer (NK) cells play a critical role in early host defense to infected and transformed cells. Here, we show that mice deficient in Eri1, a conserved 3'-to-5' exoribonuclease that represses RNA interference, have a cell-intrinsic defect in NK-cell development and maturation. Eri1(-/-) NK cells displayed delayed acquisition of Ly49 receptors in the bone marrow (BM) and a selective reduction in Ly49D and Ly49H activating receptors in the periphery. Eri1 was required for immune-mediated control of mouse CMV (MCMV) infection. Ly49H(+) NK cells deficient in Eri1 failed to expand efficiently during MCMV infection, and virus-specific responses were also diminished among Eri1(-/-) T cells. We identified miRNAs as the major endogenous small RNA target of Eri1 in mouse lymphocytes. Both NK and T cells deficient in Eri1 displayed a global, sequence-independent increase in miRNA abundance. Ectopic Eri1 expression rescued defective miRNA expression in mature Eri1(-/-) T cells. Thus, mouse Eri1 regulates miRNA homeostasis in lymphocytes and is required for normal NK-cell development and antiviral immunity
Detection of Clonal and Subclonal Copy-Number Variants in Cell-Free DNA from Patients with Breast Cancer Using a Massively Multiplexed PCR Methodology
We demonstrate proof-of-concept for the use of massively multiplexed PCR and next-generation sequencing (mmPCR-NGS) to identify both clonal and subclonal copy-number variants (CNVs) in circulating tumor DNA. This is the first report of a targeted methodology for detection of CNVs in plasma.
Using an in vitro model of cell-free DNA, we show that mmPCR-NGS can accurately detect CNVs with average allelic imbalances as low as 0.5%, an improvement over previously reported whole-genome sequencing approaches. Our method revealed differences in the spectrum of CNVs detected in tumor tissue subsections and matching plasma samples from 11 patients with stage II breast cancer. Moreover, we showed that liquid biopsies are able to detect subclonal mutations that may be missed in tumor tissue biopsies. We anticipate that this mmPCR-NGS methodology will have broad applicability for the characterization, diagnosis, and therapeutic monitoring of CNV-enriched cancers, such as breast, ovarian, and lung cancer
Mammalian microRNAs: experimental evaluation of novel and previously annotated genes
MicroRNAs (miRNAs) are small regulatory RNAs that derive from distinctive hairpin transcripts. To learn more about the miRNAs of mammals, we sequenced 60 million small RNAs from mouse brain, ovary, testes, embryonic stem cells, three embryonic stages, and whole newborns. Analysis of these sequences confirmed 398 annotated miRNA genes and identified 108 novel miRNA genes. More than 150 previously annotated miRNAs and hundreds of candidates failed to yield sequenced RNAs with miRNA-like features. Ectopically expressing these previously proposed miRNA hairpins also did not yield small RNAs, whereas ectopically expressing the confirmed and newly identified hairpins usually did yield small RNAs with the classical miRNA features, including dependence on the Drosha endonuclease for processing. These experiments, which suggest that previous estimates of conserved mammalian miRNAs were inflated, provide a substantially revised list of confidently identified murine miRNAs from which to infer the general features of mammalian miRNAs. Our analyses also revealed new aspects of miRNA biogenesis and modification, including tissue-specific strand preferences, sequential Dicer cleavage of a metazoan precursor miRNA (pre-miRNA), consequential 5′ heterogeneity, newly identified instances of miRNA editing, and evidence for widespread pre-miRNA uridylation reminiscent of miRNA regulation by Lin28