34 research outputs found
Dont Mess with Texas: Getting the Lone Star State to Net-Zero by 2050
The world is decarbonizing. Many countries, companies, and financial institutions have committed to cutting their emissions. Decarbonization commitments have been issued by: 136 countries including Canada, China, and the UK, at least 16 U.S. states including New York, Louisiana, and Virginia, and a third of the largest 2,000 publicly traded companies in the world, including Apple, Amazon, and Walmart, and numerous Texas companies like ExxonMobil, American and Southwest Airlines, Baker Hughes, and AT&T.1–9 These decarbonizing countries, states, cities, and companies are Texas's energy customers. If Texas ignores the challenge to decarbonize its economy, it may eventually face the more difficult challenge of selling carbon-intensive products to customers around the world who do not want them. We are already seeing this scenario beginning to play out with France canceling a liquified natural gas deal from Texas gas producers and both U.S. and international automakers announcing shifts to electric vehicles. Proactive net-zero emissions strategies might allow Texas to maintain energy leadership and grow the economy within a rapidly decarbonizing global marketplace.Thankfully, Texas is uniquely positioned to lead the world in the transition to a carbon-neutral energy economy. With the second highest Gross State Product in the US, the Texas economy is on par with countries like Canada, Italy, or Brazil. Thus, Texas's decisions have global implications. Texas also has an abundant resource of low-carbon energy sources to harness and a world-class workforce with technical capabilities to implement solutions at a large-scale quickly and safely. Texas has a promising opportunity to lead the world towards a better energy system in a way that provides significant economic benefits to the state by leveraging our renewable resources, energy industry expertise, and strong manufacturing and export markets for clean electricity, fuels, and products. The world is moving, with or without Texas, but it is likely to move faster--and Texas will be more prosperous--if Texans lead the way.There are many ways to fully decarbonize the Texas economy across all sectors by 2050. In this analysis, we present a Business as Usual (BAU) scenario and four possible pathways to Texas achieving state-wide net-zero emissions by 2050. Figure ES-1 provides a visual comparison of scenario conditions
Goal disruption theory, military personnel, and the creation of merged profiles: A mixed method investigation
The present study provides an example of the integrated data analysis technique of creating and interpreting merged profiles. By using this approach to merging data sources, we gained unique insight into goal disruption theory (GDT). Qualitative data suggest that military personnel harbor a wide range of desired end-states. Quantitative data support a component of GDT, suggesting that participants who have a strong need for desired end-state displayed greater purposive harm endurance. Interpretation of merged profiles revealed caveats to this relationship, in particular that not all end-states are equally motivating. Results illustrate the benefits of the integrated data analysis technique of creating and interpreting merged profiles. Utilization of the merged profiles illuminated relationships that would not have been exposed otherwise
Building a Quantum Engineering Undergraduate Program
Contribution: A roadmap is provided for building a quantum engineering education program to satisfy U.S. national and international workforce needs.
Background: The rapidly growing quantum information science and engineering (QISE) industry will require both quantum-aware and quantum-proficient engineers at the bachelor\u27s level.
Research Question: What is the best way to provide a flexible framework that can be tailored for the full academic ecosystem?
Methodology: A workshop of 480 QISE researchers from across academia, government, industry, and national laboratories was convened to draw on best practices; representative authors developed this roadmap.
Findings: 1) For quantum-aware engineers, design of a first quantum engineering course, accessible to all STEM students, is described; 2) for the education and training of quantum-proficient engineers, both a quantum engineering minor accessible to all STEM majors, and a quantum track directly integrated into individual engineering majors are detailed, requiring only three to four newly developed courses complementing existing STEM classes; 3) a conceptual QISE course for implementation at any postsecondary institution, including community colleges and military schools, is delineated; 4) QISE presents extraordinary opportunities to work toward rectifying issues of inclusivity and equity that continue to be pervasive within engineering. A plan to do so is presented, as well as how quantum engineering education offers an excellent set of education research opportunities; and 5) a hands-on training plan on quantum hardware is outlined, a key component of any quantum engineering program, with a variety of technologies, including optics, atoms and ions, cryogenic and solid-state technologies, nanofabrication, and control and readout electronics
Building a Quantum Engineering Undergraduate Program
The rapidly growing quantum information science and engineering (QISE)
industry will require both quantum-aware and quantum-proficient engineers at
the bachelor's level. We provide a roadmap for building a quantum engineering
education program to satisfy this need. For quantum-aware engineers, we
describe how to design a first quantum engineering course accessible to all
STEM students. For the education and training of quantum-proficient engineers,
we detail both a quantum engineering minor accessible to all STEM majors, and a
quantum track directly integrated into individual engineering majors. We
propose that such programs typically require only three or four newly developed
courses that complement existing engineering and science classes available on
most larger campuses. We describe a conceptual quantum information science
course for implementation at any post-secondary institution, including
community colleges and military schools. QISE presents extraordinary
opportunities to work towards rectifying issues of inclusivity and equity that
continue to be pervasive within engineering. We present a plan to do so and
describe how quantum engineering education presents an excellent set of
education research opportunities. Finally, we outline a hands-on training plan
on quantum hardware, a key component of any quantum engineering program, with a
variety of technologies including optics, atoms and ions, cryogenic and
solid-state technologies, nanofabrication, and control and readout electronics.
Our recommendations provide a flexible framework that can be tailored for
academic institutions ranging from teaching and undergraduate-focused two- and
four-year colleges to research-intensive universities.Comment: 25 pages, 2 figure
Chlorhexidine versus povidone–iodine skin antisepsis before upper limb surgery (CIPHUR) : an international multicentre prospective cohort study
Introduction
Surgical site infection (SSI) is the most common and costly complication of surgery. International guidelines recommend topical alcoholic chlorhexidine (CHX) before surgery. However, upper limb surgeons continue to use other antiseptics, citing a lack of applicable evidence, and concerns related to open wounds and tourniquets. This study aimed to evaluate the safety and effectiveness of different topical antiseptics before upper limb surgery.
Methods
This international multicentre prospective cohort study recruited consecutive adults and children who underwent surgery distal to the shoulder joint. The intervention was use of CHX or povidone–iodine (PVI) antiseptics in either aqueous or alcoholic form. The primary outcome was SSI within 90 days. Mixed-effects time-to-event models were used to estimate the risk (hazard ratio (HR)) of SSI for patients undergoing elective and emergency upper limb surgery.
Results
A total of 2454 patients were included. The overall risk of SSI was 3.5 per cent. For elective upper limb surgery (1018 patients), alcoholic CHX appeared to be the most effective antiseptic, reducing the risk of SSI by 70 per cent (adjusted HR 0.30, 95 per cent c.i. 0.11 to 0.84), when compared with aqueous PVI. Concerning emergency upper limb surgery (1436 patients), aqueous PVI appeared to be the least effective antiseptic for preventing SSI; however, there was uncertainty in the estimates. No adverse events were reported.
Conclusion
The findings align with the global evidence base and international guidance, suggesting that alcoholic CHX should be used for skin antisepsis before clean (elective upper limb) surgery. For emergency (contaminated or dirty) upper limb surgery, the findings of this study were unclear and contradict the available evidence, concluding that further research is necessary