69 research outputs found

    Sharing of worldwide distributed carbohydrate-related digital resources: online connection of the Bacterial Carbohydrate Structure DataBase and GLYCOSCIENCES.de

    Get PDF
    Functional glycomics, the scientific attempt to identify and assign functions to all glycan molecules synthesized by an organism, is an emerging field of science. In recent years, several databases have been started, all aiming to support deciphering the biological function of carbohydrates. However, diverse encoding and storage schemes are in use amongst these databases, significantly hampering the interchange of data. The mutual online access between the Bacterial Carbohydrate Structure DataBase (BCSDB) and the GLYCOSCIENCES.de portal, as a first reported attempt of a structure-based direct interconnection of two glyco-related databases is described. In this approach, users have to learn only one interface, will always have access to the latest data of both services, and will have the results of both searches presented in a consistent way. The establishment of this connection helped to find shortcomings and inconsistencies in the database design and functionality related to underlying data concepts and structural representations. For the maintenance of the databases, duplication of work can be easily avoided, and will hopefully lead to a better worldwide acceptance of both services within the community of glycoscienists. BCSDB is available at and the GLYCOSCIENCES.de portal a

    An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development

    Get PDF
    Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we performed a comparative analysis of co-expression networks between Arabidopsis and rice as reference species with different wall types. Many co-expressed genes were represented by orthologs in both species, which implies common biological features, while some gene families were only found in one of the species, and therefore likely to be related to differences in their cell walls. To predict the subcellular location of the identified proteins, we developed a new method, PFANTOM (plant protein family information-based predictor for endomembrane), which was shown to perform better for proteins in the endomembrane system than other available prediction methods. Based on the combined approach of co-expression and predicted cellular localization, we propose a model for Arabidopsis and rice xylan synthesis in the Golgi apparatus and signaling from plasma membrane to nucleus for secondary cell wall differentiation. As an experimental validation of the model, we show that an Arabidopsis mutant in the PGSIP1 gene encoding one of the Golgi localized candidate proteins has a highly decreased content of glucuronic acid in secondary cell walls and substantially reduced xylan glucuronosyltransferase activity

    GlycoViewer: a tool for visual summary and comparative analysis of the glycome

    Get PDF
    The GlycoViewer (http://www.systemsbiology.org.au/glycoviewer) is a web-based tool that can visualize, summarize and compare sets of glycan structures. Its input is a group of glycan structures; these can be entered as a list in IUPAC format or via a sugar structure builder. Its output is a detailed graphic, which summarizes all salient features of the glycans according to the shapes of the core structures, the nature and length of any chains, and the types of terminal epitopes. The tool can summarize up to hundreds of structures in a single figure. This allows unique, high-level views to be generated of glycans from one protein, from a cell, a tissue or a whole organism. Use of the tool is illustrated in the analysis of normal and disease-associated glycans from the human glycoproteome

    High prevalence of alpha thalassemia in the tribal community of the western part of India! Reality or myth? Can simple hematology parameters; MCV and MCH act as screening tools at birth?

    Get PDF
    Background: The majority of adult tribal subjects in the western part of India, show microcytic hypochromic red cells, and borderline anemia with a normal iron profile, suggesting a high prevalence of thalassemia in this population. Methods: The current study was designed to perform qualitative (to screen for Hb Bart’s) and quantitative (to estimate percentage of Hb Bart’s) hemoglobin electrophoresis with modification of the method, to evaluate the prevalence of α thalassemia and to determine gene frequency of α+ thal gene. Furthermore, the present study also aimed to evaluate common hematology parameters like MCV and MCH as screening tools to suspect α thalassemia at birth. Results: Based on hemoglobin electrophoresis, the prevalence of α thalassemia in all its forms was found to be 66.66%. The estimated gene frequency for α+ thal was found to be 0.7453 and based on that, the extrapolated prevalence of α thalassemia was 93.52% (55.55% homozygous and 37.97% heterozygous). MCV<100 fl and MCH<31 pg were found to be reliable screening tools to predict α thalassemia at birth in full-term uncomplicated pregnancy. Conclusions: Tribal community in the western part of India bears a very high prevalence of α thalassemia, it’s a reality and not a myth. Simple hematological parameters like MCV (<100 fl) and MCH (<31 pg) measured at birth can prove to be cost-effective surrogate markers for α thalassemia. Large scale study using confirmatory genetic analysis is required to validate the findings.

    Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae

    Get PDF
    O-Mannosylation is a vital protein modification conserved from fungi to humans. Yeast is a perfect model to study this post-translational modification, because in contrast to mammals O-mannosylation is the only type of O-glycosylation. In an essential step toward the full understanding of protein O-mannosylation we mapped the O-mannose glycoproteome in baker's yeast. Taking advantage of an O-glycan elongation deficient yeast strain to simplify sample complexity, we identified over 500 O-glycoproteins from all subcellular compartments for which over 2300 O-mannosylation sites were mapped by electron-transfer dissociation (ETD)-based MS/MS. In this study, we focus on the 293 O-glycoproteins (over 1900 glycosylation sites identified by ETD-MS/MS) that enter the secretory pathway and are targets of ER-localized protein O-mannosyltransferases. We find that O-mannosylation is not only a prominent modification of cell wall and plasma membrane proteins, but also of a large number of proteins from the secretory pathway with crucial functions in protein glycosylation, folding, quality control, and trafficking. The analysis of glycosylation sites revealed that O-mannosylation is favored in unstructured regions and β-strands. Furthermore, O-mannosylation is impeded in the proximity of N-glycosylation sites suggesting the interplay of these types of post-translational modifications. The detailed knowledge of the target proteins and their O-mannosylation sites opens for discovery of new roles of this essential modification in eukaryotes, and for a first glance on the evolution of different types of O-glycosylation from yeast to mammals

    The GalNAc-type O-Glycoproteome of CHO Cells Characterized by the SimpleCell Strategy

    Get PDF
    The Chinese hamster ovary cell (CHO) is the major host cell factory for recombinant production of biological therapeutics primarily because of its “human-like” glycosylation features. CHO is used for production of several O-glycoprotein therapeutics including erythropoietin, coagulation factors, and chimeric receptor IgG1-Fc-fusion proteins, however, some O-glycoproteins are not produced efficiently in CHO. We have previously shown that the capacity for O-glycosylation of proteins can be one limiting parameter for production of active proteins in CHO. Although the capacity of CHO for biosynthesis of glycan structures (glycostructures) on glycoproteins are well established, our knowledge of the capacity of CHO cells for attaching GalNAc-type O-glycans to proteins (glycosites) is minimal. This type of O-glycosylation is one of the most abundant forms of glycosylation, and it is differentially regulated in cells by expression of a subset of homologous polypeptide GalNAc-transferases. Here, we have genetically engineered CHO cells to produce homogeneous truncated O-glycans, so-called SimpleCells, which enabled lectin enrichment of O-glycoproteins and characterization of the O-glycoproteome. We identified 738 O-glycoproteins (1548 O-glycosites) in cell lysates and secretomes providing the first comprehensive insight into the O-glycosylation capacity of CHO (http://glycomics.ku.dk/o-glycoproteome_db/)

    An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles

    Get PDF
    Peptide hormones and neuropeptides encompass a large class of bioactive peptides that regulate physiological processes like anxiety, blood glucose, appetite, inflammation and blood pressure. Here, we execute a focused discovery strategy to provide an extensive map of O-glycans on peptide hormones. We find that almost one third of the 279 classified peptide hormones carry O-glycans. Many of the identified O-glycosites are conserved and are predicted to serve roles in proprotein processing, receptor interaction, biodistribution and biostability. We demonstrate that O-glycans positioned within the receptor binding motifs of members of the neuropeptide Y and glucagon families modulate receptor activation properties and substantially extend peptide half-lives. Our study highlights the importance of O-glycosylation in the biology of peptide hormones, and our map of O-glycosites in this large class of biomolecules serves as a discovery platform for an important class of molecules with potential opportunities for drug designs. O-glycosylation is an abundant post-translational modification but its relevance for bioactive peptides is unclear. Here, the authors detect O-glycans on almost one third of the classified peptide hormones and show that O-glycosylation can modulate peptide half-lives and receptor activation properties.This work was supported by the Novo Nordisk Foundation, the Lundbeck Foundation, Danish National Research Foundation Grant DNRF107

    EUROCarbDB: An open-access platform for glycoinformatics

    Get PDF
    The EUROCarbDB project is a design study for a technical framework, which provides sophisticated, freely accessible, open-source informatics tools and databases to support glycobiology and glycomic research. EUROCarbDB is a relational database containing glycan structures, their biological context and, when available, primary and interpreted analytical data from high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance experiments. Database content can be accessed via a web-based user interface. The database is complemented by a suite of glycoinformatics tools, specifically designed to assist the elucidation and submission of glycan structure and experimental data when used in conjunction with contemporary carbohydrate research workflows. All software tools and source code are licensed under the terms of the Lesser General Public License, and publicly contributed structures and data are freely accessible. The public test version of the web interface to the EUROCarbDB can be found at http://www.ebi.ac.uk/eurocar
    corecore