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Abstract 

Protein O-mannosylation (O-Man), originally discovered in yeast five decades ago, is an 

important post-translational modification (PTM) conserved from bacteria to humans, but not 

found in plants or nematodes. Until recently, the homologous family of ER-located protein O-

mannosyl transferases (PMT1-7 in yeast; POMT1/POMT2 in humans), were the only known 

enzymes involved in directing O-Man biosynthesis in eukaryotes. However, recent studies 

demonstrate the existence of multiple distinct O-Man glycosylation pathways indicating that the 

genetic and biosynthetic regulation of O-Man in eukaryotes is more complex than previously 

envisioned. Introduction of sensitive glycoproteomics strategies provided an expansion of O-

Man glycoproteomes in eukaryotes (yeast and mammalian cell lines) leading to the discovery of 

O-Man glycosylation on important mammalian cell adhesion (cadherin superfamily) and 

signaling (plexin family) macromolecules, and to the discovery of unique nucleocytoplasmic O-

Man glycosylation in yeast. It is now evident that eukaryotes have multiple distinct O-Man 

glycosylation pathways including: i) the classical PMT1-7 and POMT1/POMT2 pathway 

conserved in all eukaryotes apart from plants; ii) a yet uncharacterized nucleocytoplasmic 

pathway only found in yeast; iii) an ER-located pathway directed by the TMTC1-4 genes found 

in metazoans and protists and primarily dedicated to the cadherin superfamily; and iv) a yet 

uncharacterized pathway found in metazoans primarily dedicated to plexins. O-Man 

glycosylation is thus emerging as a much more widespread and evolutionary diverse post-

translational modification (PTM) with complex genetic and biosynthetic regulation. While 

deficiencies in the POMT1/POMT2 O-Man pathway underlie muscular dystrophies, the 

TMTC1-4 pathway appear to be involved in distinct congenital disorders with 

neurodevelopmental phenotypes. Here, we review and discuss the recent discoveries of the new 

non-classical O-Man glycosylation pathways, their substrates, functions and roles in disease.  
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Highlights 

• Multiple O-Man glycosylation pathways exist in eukaryotes  

• Yeast has a unique nucleocytosolic O-Man glycosylation pathway in lieu of the common eukaryotic 

O-GlcNAc nucleocytosolic pathway 

• Cadherin and plexin superfamilies of proteins are major carriers of O-Man glycans 

• Congenital disorders of glycosylation are caused by deficiencies in TMTCs           

 

 

Introduction 

The classical pathway for O-Man glycosylation (Fig. 1) was originally discovered in yeast (1), 

and following cloning of the initiating protein mannosyltransferases, PMT1-PMT7, homologs of 

the yeast enzymes (mammalian homologues abbreviated as POMT1/POMT2) were later 

identified in eukaryotes (except nematodes and plants) and bacteria (2-4). These enzymes are 

multi-pass transmembrane proteins that utilize dolichol phosphate-β-D-mannose (Dol-P-Man) as 

donor substrate and catalyze attachment of alpha-linked mannose to serine and threonine 

residues; they have catalytic domains oriented into the endoplasmic reticulum (ER) lumen and 

require dimerization for function (5). In yeast, the PMTs are predicted to widely glycosylate 

proteins trafficking the secretory pathway (6, 7), while recent studies suggest that the 

homologous POMTs have more restricted functions limited to a few proteins including alpha-

dystroglycan (αDG) and the densely O-mannosylated but relatively unexplored protein 

KIAA1549 (8). Yeast O-Man glycans are extended into poly-mannose structures, while the 

POMT1/POMT2 O-Man glycans in mammals are further extended into complex glycans through 

diverse pathways (Fig. 1), including perhaps the most elaborate and unique type of protein 

glycosylation leading to the important laminin binding epitope known as matriglycan (9-11).  

Insight into O-mannosylation in higher eukaryotes has been long underway and our knowledge 

of the O-Man glycoproteome is still advancing. The first mammalian O-Man glycans were 

isolated from rat brain in 1979 (12, 13), and αDG was later identified as a mammalian substrate 

for the classical O-Man pathway (14). The connection between αDG, the POMT1/POMT2 genes 

and encoded enzymes, and a subset of congenital muscular dystrophies (15, 16), sparked intense 

research in this type of O-glycosylation; significant efforts have been devoted to elucidating 

αDG O-Man structures and functions in the past two decades, unraveling the remarkable 

complexity and biochemistry of classical O-Man glycans (17-19). Less progress was made in 

understanding the breadth and depth of the eukaryotic O-Man glycoproteome, i.e. the protein 

substrates (and sites) of O-Man pathways, despite evidence demonstrating that O-Man glycans 

are not exclusively found on αDG in mammals (20-24), they constitute a major part of the total 

O-glycans in the brain (25), and they represent the only type of O-glycosylation in yeast (3, 4).  

In 2013, two groups independently reported occurrence of O-Man glycans on a new class of 

proteins (cadherins) in metazoans. Winterhalter et al. identified O-Man on T-cadherin derived 
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from rabbit skeletal muscle, and demonstrated that the O-Man glycan identified was not 

extended beyond the initial monosaccharide, an unexpected finding considering that classical O-

Man glycosylation in mammals are elongated and complex (26) (Fig. 1). Shortly after, the same 

group demonstrated the occurrence of O-Man glycans on affinity purified E-cadherin and 

suggested that O-Man fulfils important functions in cadherin-mediated cell-cell adhesion (27). 

We utilized the SimpleCell gene editing glycoproteomics strategy with a human cell line to 

explore the O-Man glycoproteome (28), and were able to expand the glycoproteome with over 

50 distinct proteins, predominantly identifying members of the cadherin superfamily and the 

plexin family, including two structurally homologous receptor tyrosine kinases: hepatocyte 

growth factor receptor (c-MET) and macrophage stimulating 1 receptor (MST1R, also known as 

RON) (29). Collectively, these studies revealed two unique details that clearly distinguished the 

new classes of O-Man glycoproteins from the classical αDG-type O-Man glycosylation: i) these 

O-Man glycosylations were apparently not extended (Man-α-O-Ser/Thr); and ii) the O-Man 

glycosites were mapped to β-strands of two distinct protein folds – on extracellular cadherin 

(EC) domains of cadherins (Fig. 2) and on Ig-like, plexin and transcription factor (IPT) domains 

of plexins, c-MET and RON. The finding that these O-Man glycosites were not extended like the 

O-Man glycans found on αDG is yet unexplained. In the context of αDG, Man-α-O-Ser/Thr 

glycans (core M0) are considered to be biosynthetic intermediates that serve as substrates for the 

2-GlcNAc transferase POMGnT1 (core M1), for the β6-GlcNAc transferase MGAT5B (core 2) 

and the β3-GlcNAc transferase POMGnT2 (core M3) (10), however, in the context of EC and 

IPT domains, Man-α-O-Ser/Thr glycans are apparently not further elongated by any of the 

enzymes responsible for core M1-3 biosynthesis. The POMT1/POMT2 enzymes initiate O-Man 

biosynthesis at unfolded regions (mucin-like domain) of αDG, and protein context appears to be 

important for directing core M1-3 biosynthesis, however, it remains unclear how (and why) 

distinct protein folds (EC and IPT domains) are targeted by single O-Man monosaccharides.  

The finding that O-Man glycosites in EC and IPT domains are uniquely located in folded 

domains warranted further examination of the O-Man biosynthetic pathways in mammalian cells. 

We therefore used a knock-out (KO) strategy targeting the classical POMT1 and 

POMT1/POMT2 enzymes to dissect the biosynthetic regulation of O-Man in mammalian cell 

lines, and surprisingly we found that the classical POMT1/POMT2 enzymes are not required for 

O-Man biosynthesis on cadherins and plexins (8). This seeded the hypothesis that mammals have 

evolved multiple, distinct O-Man biosynthetic pathways targeting different classes of proteins.  

Non-classical O-Man glycosylation of cadherins by TMTC1-4 

Guided by bioinformatic sequence analyses, we identified a family of four homologous genes, 

encoding transmembrane and tetratricopeptide repeat containing protein 1-4 (TMTC1-4), as 

putative protein O-Man transferases. Combinatorial KO of all four genes in human HEK293 

cells subsequently demonstrated that O-Man glycosylation was selectively lost on cadherins, but 

not on αDG and further surprisingly neither on plexins. This identified TMTC1-4 as strong 

enzyme candidates selectively dedicated to O-Man glycosylation of cadherins (30). Sunryd et al. 
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had previously identified TMTC1 and TMTC2 as ER resident proteins involved in Ca2+ 

regulation (31), and it is reasonable to predict that all four isoforms localize to the ER 

compartment. Like the POMT1/POMT2 enzymes, the TMTC1-4 proteins are multi-pass 

transmembrane proteins with conserved DD motifs (predicted catalytic site) in the first loop 

facing the ER lumen, and they are predicted to share structural homology with the POMTs and 

the ArnT aminoarabinose-transferase (32). Apart from also being multi-pass transmembrane 

proteins, the DPY19L1-4 enzymes responsible for C-mannosylation do not appear to share any 

structural homology with TMTCs (33-35). All four TMTC proteins are further characterized by 

the presence of a variable number of C-terminal tetratricopeptide repeats (TPR), which is an 

evolutionary conserved structural scaffold and mediator of protein-protein interactions (36). TPR 

domains have previously been characterized on the O-GlcNAc transferase (OGT), responsible 

for nucleocytoplasmic O-GlcNAcylation, and OGT TPRs are known to be important for 

substrate recognition and recruitment (37, 38). The functional importance of the TPR domains of 

TMTCs is currently unknown, but it is not unlikely that they serve similar roles, i.e. recruitment 

of specific substrates (potentially EC domains), which could explain the selective specificity of 

TMTCs for the cadherin superfamily of adhesion molecules.  

A region of the TMTC proteins close to the first loop, and spanning subsequent transmembrane 

domains is identified as matching with the DUF1732 sequence motif. The presence of both this 

domain, and variable numbers of TPRs is enough to identify orthologs of this protein family in 

various organisms (Fig. 3). Members of the TMTC family can be found in nearly all metazoan 

organisms and extend back to include lower clades such as holozoa (with TMTC members 

detected in choanoflagellates), and sequence evidence suggests that family members can be 

found in other protists and in some prokaryotes. Given that this protein family predates the 

substrates that it glycosylates, as well as the fact that this same DUF1732 domain belongs to the 

ArnT superfamily domains which include homologues to STT3s and the ALGs, it is likely that 

there has been a shift in specificity of these enzymes, and the activity of these proteins in lower 

organisms still needs to be elucidated.        

Cadherin proteins constitute a large family of cell-cell adhesion molecules that include the 

classical cadherins, desmosomal cadherins, protocadherins, and others (Fig. 2) (39). Cadherins 

are involved in morphogenetic processes including embryonic cell layer separation, cell 

signaling, and physical homeostasis of mature tissues (40). Consistent with these roles, decreased 

cadherin expression may result in decreased cellular adhesion, which is a common feature of 

metastasis (41). Protocadherins expressed on cell surfaces allow neurons to discriminate self 

from non-self (42), which is indispensable for neuronal wiring and development of the nervous 

system. Importantly, TMTC mutations/deficiencies associate or directly cause neurological 

disorders (Fig. 1 and 2C), including schizophrenia (TMTC1), hearing loss (TMTC2 and 

TMTC4), intellectual impairment (TMTC3), epilepsy (TMTC3) and brain 

malformation/Cobblestone lissencephaly (TMTC3) (43-48). The etiology of this broad class of 

disorders remains largely unexplained, however, the identification of TMTCs as O-Man enzymes 
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specifically targeting cadherin molecules opens for new hypotheses and suggest that the non-

classical O-Man glycans on these proteins may serve roles in cell-cell interaction networks. 

Cadherins are characterized by the presence of a varying number of EC domains that confer 

specific interactions required for function (Fig. 2A) (49). The cell-cell binding process is 

mediated by cooperative formation of distinct EC-EC interactions in cis (on the same cell) and/or 

in trans (between different cells) (Fig. 2A). The EC domain has a characteristic 

immunoglobulin-like (Ig-like) fold consisting of a two-layer β-sheet sandwich with antiparallel 

β-strands (Fig. 2B). The O-Man glycans are located on evolutionary conserved amino acids on 

either B- or G-strands (Fig. 2B), but it is currently unclear if they are involved in EC-EC 

interactions, cadherin folding, secretion and/or fine-tuning of functions. We recently 

demonstrated that individual TMTC enzymes have specificities for B- or G-strands located on 

opposite sides of the EC fold (Fig. 2B), suggesting that cadherin function may be tuned by 

differential O-Man glycosylation on specific EC domains and β-strands. The correlation between 

different neurological phenotypes and deficiencies in distinct TMTC isoenzymes supports this 

hypothesis (Fig. 2C), and further indicates that O-Man glycans on distinct EC domains/β-strands 

are tightly controlled to orchestrate specific functions. Delineating how individual TMTC 

enzymes operate and direct O-Man glycans on the EC domains may advance the understanding 

of cellular processes involving cadherin/protocadherin mediated cell adhesion and function. 

Particular interest may relate to the role of E-cadherin which plays important roles in the 

malignant phenotypes of cancer. Previous studies have suggested the involvement of POMT-

driven O-Man glycosylation in the tumor suppression functions of E-cadherin (50). However, 

considering the later discovery of TMTCs and their dedicated roles in O-Man glycosylation of 

cadherins (30), these findings may not be correct and remain unexplained. Nevertheless, it is 

likely that both N- and O-glycosylation may play roles in E-cadherin function in cancer (51). 

Non-classical O-Man glycosylation of IPT domains 

The original O-Man glycoproteome study also identified conserved glycosites in IPT domains of 

plexins, c-MET and RON receptors (29), and surprisingly, we found that the biosynthesis of the 

O-Man glycans at these sites were independent of both the POMT1/POMT2 and TMTC1-4 

glycosylation pathways (8, 30). The biosynthetic enzymes responsible for IPT domain O-Man 

glycosylation is currently unknown (Fig. 1), although we have identified a candidate gene that is 

under investigation. Plexins are single-pass transmembrane proteins with large ectodomains 

composed of a Sema domain, 2-3 plexin-semaphorin (PSI) domains and 3-4 IPT domains (52). 

Plexins act as the main receptors for a class of signaling factors known as semaphorins, and this 

signaling circuit is widely recognized as a key regulator of multiple cellular processes in renal, 

cardiovascular, bone and nervous systems (53); aberrant plexin signaling is associated with 

multiple disorders, including cancers (54). RON and c-MET tyrosine kinase receptors share 

sequence- and structural homology with the plexin family of receptors, and incorporate Sema, 

PSI and IPT domains (55). Both RON and c-MET are essential for embryonic development and 

organogenesis, but these receptors are also known for their prominent roles in cancer, metastasis 
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and tumor progression (56). The plexin signaling cascade is initiated by ligand binding to the 

extracellular Sema domain, leading to plexin dimerization and activation, and although the 

precise activation mechanism of plexins remains unclear, recent evidence indicates that IPT 

domains play an important role in this process (57). Furthermore, the structurally homologous 

relative c-MET is known to harbor the high-affinity binding site for its ligand, hepatocyte growth 

factor (HGF), at the extracellular IPT domains (58). The biological roles of O-Man on IPT 

domains remain unclear, but identification of the enzymes responsible for IPT domain O-Man 

glycosylation may now enable functional studies and potentially identify new congenital 

disorders linked to dysfunctional O-Man glycosylation on this important class of receptors.     

Nucleocytoplasmic O-Man glycosylation in yeast 

Another surprising finding derived from our O-Man glycoproteomic analyses was the finding of 

O-Man glycans widely distributed on nuclear and cytosolic protein in yeast (59). 

Nucleocytoplasmic O-glycosylation (O-GlcNAcylation) is highly conserved among eukaryotes 

and is also present in bacteria, however, some protists (e.g. Leishmania and Trypanosoma) and 

yeast (S. cerevisiae or S. pombe) lack the OGT enzyme responsible for O-GlcNAcylation (60). 

Yeast and humans share a significant fraction of their functional pathways that control key 

aspects of eukaryotic cell biology including Ser/Thr phosphorylation to regulate cell signaling 

(61, 62), however, the conceived lack of a nucleocytoplasmic O-glycosylation mechanism for 

co-regulation of phosphorylation in yeast remained enigmatic considering the important 

functional roles of the O-GlcNAc modification in mammals (37, 38). This conundrum may be 

explained by our recent mass spectrometric analyses of the yeast O-Man glycoproteome that 

increased the coverage from ~50 to >500 known O-Man glycoproteins (6, 59), and demonstrated 

that >30% of the identified O-Man glycoproteins were found to originate from mitochondrial and 

nucleocytoplasmic compartments (59). Specifically, many O-Man glycosites were found on 

similar proteins and in similar or in some cases identical orthologous positions as O-GlcNAc in 

mammals, and in several cases the identified yeast O-Man glycosites were known to also be 

phosphorylated. Given that the classical yeast PMT1-7 have catalytic domains oriented into the 

ER lumen, these findings suggested that yeast have an unknown glycosylation mechanism for 

directing O-Man glycosylation on nucleocytoplasmic proteins (Fig. 1). It is interesting to note 

that ectopic expression of OGT in yeast is toxic and leads to growth defects, which may be 

alleviated by co-expression of the O-GlcNAc hydrolase (OGA) (63). However, the functions of 

nucleocytoplasmic O-Man in yeast remain unknown and the enzyme(s) responsible for this type 

of nucleocytoplasmic O-Man glycosylation have not been identified.     

Concluding remarks 

Developments in glycoproteomics strategies have provided major progress in our understanding 

of protein O-Man glycosylation pathways in eukaryotes. It is now evident that O-Man is a 

widespread PTM controlled by multiple distinct enzymatic pathways. Yeast has two O-Man 

biosynthetic pathways with the nucleocytoplasmic type likely serving as the substitute for the 

important nucleocytoplasmic O-GlcNAcylation process found in higher eukaryotes. In 
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mammalian cells at least two new types of O-Man glycosylation pathways are seemingly 

dedicated to specific protein folds and functional domains on major classes of adhesion 

molecules and receptors, leaving a total of three distinct O-Man glycosylation pathways in higher 

eukaryotic cells serving different classes of proteins. Future studies are needed to explore the 

different biosynthetic pathways and how the elongation of these O-Man glycans differ as well as 

the biological roles of these. With respect to POMT1/POMT2 driven O-Man glycosylations, we 

predict that further studies on the relatively unexplored but densely O-mannosylated protein 

KIAA1549 will shed new light on the structure-function relationship of O-Man (core M1-M3) 

glycans. The TMTC genes (TMTC3) already contribute to the growing list of congenital 

disorders of glycosylation, and further studies are likely to identify additional genes as the 

underlying cause of previously inexplainable neurological disorders. The lack of knowledge in 

this area is thus substantial. The recent advances were enabled by the combinatorial use of 

sensitive lectin enrichment strategies, advanced mass spectrometry-based glycoproteomics and 

precise genetic engineering, enabling dissection and discovery of novel O-Man biosynthetic 

pathways and expansion of O-Man glycoproteomes. One important lesson learned from these 

advances is that we are still many steps away from fully understanding the complexity of 

glycosylation capacities in eukaryotic cells, and that many new discoveries lie ahead.    
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Figure legends 

Figure 1 

Graphical depiction of O-Man glycosylation pathways in eukaryotes. Classical O-Man 

glycosylation is driven by the PMT1-7 (yeast) and POMT1/POMT2 (metazoan) enzymes, which 

catalyze O-Man transfer from Dol-P-Man to Ser/Thr residues in the ER lumen; classical O-Man 

glycans are further elongation into poly-mannose (yeast) or complex glycans (mammals) in the 

Golgi apparatus (3, 10). Non-classical O-Man glycosylation: nucleocytoplasmic proteins (yeast) 

and major classes of plasma membrane adhesion molecules/receptors (metazoans) are modified 

by O-Man. The enzyme(s) responsible for nucleocytoplasmic glycosylation in yeast are 

unknown; TMTC1-4 enzymes specifically target the cadherin superfamily; Plexins, c-MET and 

RON are O-Man glycosylated on their IPT domains by unknown enzyme(s). Non-classical O-

Man glycans in mammals have only been observed as single monosaccharide modifications. 

Diseases linked to deficiencies in POMT1/2 and TMTC1-4 enzyme families are highlighted in 

red boxes.        

Figure 2 

Illustration of structure and O-Man glycosylation of extracellular cadherin (EC) domains. (A) 

Cadherin domain organization and modes of action; EC1-EC3 of classical cadherins mediate 

cell-cell adhesion via cis- and trans-interactions (left). Protocadherin homodimers (cis-

interacting EC6) engage EC1-EC4 in head-to-tail trans-interactions (right). (B) β-strand 

topology and organization of EC domains (mouse E-cadherin, Protein Data Bank accession 

3Q2V); O-Man is located on opposite sides (B- and G-strands) of EC domains. (C) Hypothetical 

model for TMTC1-4 specificity based on recent studies (8, 30); disorders linked to deficiencies 

in individual TMTCs are indicated in red boxes.     

Figure 3 

Phylogenetic analysis identifies members of the TMTC family in all major classes of Eukaryotes. 

Proteomes from protists, choanoflagellates, invertebrates and vertebrates were scanned for the 

DUF1736 domain, that is found in all TMTC proteins. The scans revealed that TMTCs are well 

conserved down to Holozoa, and are also found in a number of protist species, albeit with 

varying numbers of TPRs. 
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